
Simulink® Coder™

Reference

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Coder™ Reference

© COPYRIGHT 2011–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 8.0 (Release 2011a)
September 2011 Online only Revised for Version 8.1 (Release 2011b)
March 2012 Online only Revised for Version 8.2 (Release 2012a)
September 2012 Online only Revised for Version 8.3 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Simulink Code Generation Limitations

1
Simulink Code Generation Limitations 1-2

Glossary

Function Reference

2
Build Information . 2-2

Build Process . 2-4

Desktop IDEs and Desktop Targets 2-6
IDE Automation Interface . 2-6
XMakefile . 2-7

Model Entry Points . 2-8

Project Documentation . 2-9

Rapid Simulation . 2-10

System Target File Callback Interface 2-11

Target Language Compiler and Function Library 2-12

v

Alphabetical List

3

Block Reference

4
Asynchronous . 4-2
Interrupt Templates . 4-2

Custom Code . 4-3

Desktop Targets (desktoptargetslib) 4-4
Host Communication . 4-4
Target Preferences . 4-4
Linux . 4-4
Windows . 4-5

S-Function Target . 4-6

Blocks — Alphabetical List

5

Configuration Parameters for Simulink Models

6
Code Generation Pane: General . 6-2
Code Generation: General Tab Overview 6-5
System target file . 6-6
Language . 6-8
Compiler optimization level . 6-10
Custom compiler optimization flags 6-12
TLC options . 6-13

vi Contents

Generate makefile . 6-15
Make command . 6-17
Template makefile . 6-19
Ignore custom storage classes . 6-21
Ignore test point signals . 6-23
Select objective . 6-25
Prioritized objectives . 6-27
Set objectives . 6-28
Set Objectives — Code Generation Advisor Dialog Box . . . 6-29
Check model . 6-32
Check model before generating code 6-33
Generate code only . 6-35
Build/Generate code . 6-37
Package code and artifacts . 6-38
Zip file name . 6-40

Code Generation Pane: Report . 6-42
Code Generation: Report Tab Overview 6-44
Create code generation report . 6-45
Open report automatically . 6-48
Code-to-model . 6-50
Model-to-code . 6-52
Generate model Web view . 6-54
Configure . 6-56
Eliminated / virtual blocks . 6-57
Traceable Simulink blocks . 6-59
Traceable Stateflow objects . 6-61
Traceable MATLAB functions . 6-63
Static code metrics . 6-65
Summarize which blocks triggered code replacements 6-67

Code Generation Pane: Comments 6-69
Code Generation: Comments Tab Overview 6-71
Include comments . 6-72
Simulink block / Stateflow object comments 6-74
MATLAB source code as comments 6-75
Show eliminated blocks . 6-77
Verbose comments for SimulinkGlobal storage class 6-78
Operator annotations . 6-79
Simulink block descriptions . 6-81
Simulink data object descriptions . 6-83
Custom comments (MPT objects only) 6-85
Custom comments function . 6-87

vii

Stateflow object descriptions . 6-89
Requirements in block comments . 6-91
MATLAB function help text . 6-93

Code Generation Pane: Symbols . 6-95
Code Generation: Symbols Tab Overview 6-98
Global variables . 6-99
Global types . 6-101
Field name of global types . 6-104
Subsystem methods . 6-106
Subsystem method arguments . 6-109
Local temporary variables . 6-111
Local block output variables . 6-113
Constant macros . 6-115
Minimum mangle length . 6-117
Maximum identifier length . 6-119
Generate scalar inlined parameter as 6-121
Signal naming . 6-122
M-function . 6-124
Parameter naming . 6-126
#define naming . 6-128
Use the same reserved names as Simulation Target 6-130
Reserved names . 6-131

Code Generation Pane: Custom Code 6-133
Code Generation: Custom Code Tab Overview 6-136
Use the same custom code settings as Simulation Target . . 6-137
Use local custom code settings (do not inherit from main
model) . 6-138

Source file . 6-140
Header file . 6-141
Initialize function . 6-142
Terminate function . 6-143
Include directories . 6-144
Source files . 6-146
Libraries . 6-148

Code Generation Pane: Debug . 6-150
Code Generation: Debug Tab Overview 6-152
Verbose build . 6-153
Retain .rtw file . 6-154
Profile TLC . 6-155
Start TLC debugger when generating code 6-156

viii Contents

Start TLC coverage when generating code 6-158
Enable TLC assertion . 6-159

Code Generation Pane: Interface 6-160
Code Generation: Interface Tab Overview 6-164
Code replacement library . 6-165
Custom . 6-168
Shared code placement . 6-169
Support: floating-point numbers . 6-171
Support: non-finite numbers . 6-173
Support: complex numbers . 6-175
Support: absolute time . 6-176
Support: continuous time . 6-178
Support: non-inlined S-functions . 6-180
Support: variable-size signals . 6-182
Multiword type definitions . 6-183
Maximum word length . 6-185
Classic call interface . 6-187
Single output/update function . 6-189
Terminate function required . 6-191
Generate reusable code . 6-193
Reusable code error diagnostic . 6-196
Pass root-level I/O as . 6-198
Block parameter visibility . 6-200
Internal data visibility . 6-202
Block parameter access . 6-204
Internal data access . 6-206
External I/O access . 6-208
Generate destructor . 6-210
Use operator new for referenced model object
registration . 6-212

Generate preprocessor conditionals 6-214
Suppress error status in real-time model data structure . . 6-216
Combine signal/state structures . 6-218
Configure Model Functions . 6-221
Configure C++ Encapsulation Interface 6-222
MAT-file logging . 6-223
MAT-file variable name modifier . 6-226
Interface . 6-228
Generate C API for: signals . 6-231
Generate C API for: parameters . 6-232
Generate C API for: states . 6-233
Generate C API for: root-level I/O . 6-234
Transport layer . 6-235

ix

MEX-file arguments . 6-237
Static memory allocation . 6-239
Static memory buffer size . 6-241

Code Generation Pane: RSim Target 6-243
Code Generation: RSim Target Tab Overview 6-245
Enable RSim executable to load parameters from a
MAT-file . 6-246

Solver selection . 6-247
Force storage classes to AUTO . 6-248

Code Generation Pane: S-Function Target 6-249
Code Generation S-Function Target Tab Overview 6-251
Create new model . 6-252
Use value for tunable parameters . 6-253
Include custom source code . 6-254

Code Generation Pane: Tornado Target 6-255
Code Generation: Tornado Target Tab Overview 6-257
Code replacement library . 6-258
Shared code placement . 6-260
MAT-file logging . 6-262
MAT-file variable name modifier . 6-264
Code Format . 6-266
StethoScope . 6-267
Download to VxWorks target . 6-269
Base task priority . 6-271
Task stack size . 6-273
External mode . 6-274
Transport layer . 6-276
MEX-file arguments . 6-278
Static memory allocation . 6-280
Static memory buffer size . 6-282

Code Generation Pane: IDE Link 6-284
Code Generation: IDE Link Tab Overview 6-286
Build format . 6-287
Build action . 6-289
Overrun notification . 6-292
Function name . 6-294
Configuration . 6-295
Compiler options string . 6-297

x Contents

Linker options string . 6-299
System stack size (MAUs) . 6-301
Profile real-time execution . 6-304
Profile by . 6-306
Number of profiling samples to collect 6-308
Maximum time allowed to build project (s) 6-310
Maximum time allowed to complete IDE operation (s) 6-312
Export IDE link handle to base workspace 6-313
IDE link handle name . 6-315
Source file replacement . 6-316

Parameter Reference . 6-318
Recommended Settings Summary . 6-318
Parameter Command-Line Information Summary 6-347

Model Advisor Checks

7
Embedded Coder Checks . 7-2
Checks Overview . 7-3
Check solver for code generation . 7-4
Identify questionable blocks within the specified system . . 7-6
Identify lookup table blocks that generate expensive
out-of-range checking code . 7-7

Check output types of logic blocks . 7-9
Identify blocks using one-based indexing 7-11
Check the hardware implementation 7-12
Identify questionable software environment
specifications . 7-13

Identify questionable code instrumentation (data I/O) 7-15
Check for blocks that have constraints on tunable
parameters . 7-16

Check for blocks not recommended for MISRA-C:2004
compliance . 7-18

Check configuration parameters for MISRA-C:2004
compliance . 7-19

Check for model reference configuration mismatch 7-21
Identify blocks that generate expensive saturation and
rounding code . 7-22

Check sample times and tasking mode 7-23

xi

Identify questionable subsystem settings 7-24
Identify questionable fixed-point operations 7-25
Check model configuration settings against code generation
objectives . 7-34

Check for efficiency optimization parameters 7-35

Index

xii Contents

1

Simulink Code Generation
Limitations

1 Simulink Code Generation Limitations

Simulink Code Generation Limitations
The following topics identify Simulink® code generation limitations:

• “C++ Target Language Limitations”

• “packNGo Function Limitations”

• “Tunable Expression Limitations”

• “Limitations on Data Type Specifications in Workspace”

• “Code Reuse Limitations for Subsystems”

• “Simulink Coder™ Model Referencing Limitations”

• “External Mode Limitations”

• “Noninlined S-Function Parameter Type Limitations”

• “S-Function Target Limitations”

• “Rapid Simulation Target Limitations”

• “Asynchronous Support Limitations”

• “C API Limitations”

• “Supported Products and Block Usage”

1-2

Glossary

Glossary

application modules
With respect to Simulink Coder program architecture, these are
collections of programs that implement functions carried out by the
system-dependent, system-independent, and application components.

atomic subsystem
Subsystem whose blocks are executed as a unit before moving on.
Conditionally executed subsystems are atomic, and atomic subsystems
are nonvirtual. Unconditionally executed subsystems are virtual by
default, but can be designated as atomic. The Simulink Coder build
process can generate reusable code only for nonvirtual subsystems.

base sample rate
Fundamental sample time of a model; in practice, limited by the fastest
rate at which a processor’s timer can generate interrupts. All sample
times must be integer multiples of the base rate.

block I/O structure (model_B)
Global data structure for storing block output signals. The number of
block output signals is the sum of the widths of the data output ports
of all nonvirtual blocks in your model. By default, Simulink and the
Simulink Coder build process try to reduce the size of the model_B
structure by reusing the entries in the model_B structure and making
other entries local variables.

block target file
File that describes how a specific Simulink block is to be transformed to
a language such as C, based on the block’s description in the Simulink
Coder generated file model.rtw. Typically, there is one block target
file for each Simulink block.

code reuse
Optimization whereby code generated for identical nonvirtual
subsystems is collapsed into one function that is called for each
subsystem instance with specified parameters. Code reuse, along with
expression folding, can dramatically reduce the amount of generated
code.

Glossary-1

Glossary

configuration
Set of attributes for a model which defines parameters governing how a
model simulates and generates code. A model can have one or more such
configuration sets, and users can switch between them to change code
generation targets or to modify the behavior of models in other ways.

configuration component
Named element of a configuration set. Configuration components
encapsulate settings associated with the Solver, Data Import/Export,
Optimization, Diagnostics, Hardware Implementation, Model
Referencing, and Code Generation panes in the Configuration
Parameters dialog box. A component may contain subcomponents.

embedded real-time (ERT) target
Target configuration that generates model code for execution on an
independent embedded real-time system. Requires a Embedded
Coder™ license.

expression folding
Code optimization technique that minimizes the computation of
intermediate results at block outputs and the storage of such results
in temporary buffers or variables. It can dramatically improve the
efficiency of generated code, achieving results that compare favorably
with hand-optimized code.

file extensions
The table below lists the Simulink, Target Language Compiler, and
Simulink Coder file extensions.

Extension Created by Description

.c or .cpp Target Language
Compiler

The generated C or
C++ code

.h Target Language
Compiler

C/C++ include header
file used by the .c or
.cpp program

Glossary-2

Glossary

Extension Created by Description

.mk Simulink Coder Makefile specific to
your model that is
derived from the
template makefile

.rtw Simulink Coder Intermediate
compilation
(model.rtw) of a
model file used in
generating C or C++
code

.slx Simulink Contains structures
associated with
Simulink block
diagrams

.tlc MathWorks and
Simulink Coder users

Target Language
Compiler script files
that the Simulink
Coder build process
uses to generate code
for targets and blocks

.tmf Supplied with
Simulink Coder

Template makefiles

.tmw Simulink Coder Project marker file
inside a build folder
that identifies the
date and product
version of generated
code

generic real-time (GRT) target
Target configuration that generates model code for a real-time system,
with the resulting code executed on your workstation. (Execution is
not tied to a real-time clock.) You can use GRT as a starting point for
targeting custom hardware.

Glossary-3

Glossary

host system
Computer system on which you create and may compile your real-time
application. Also referred to as emulation hardware.

inline
Generally, this means to place something directly in the generated
source code. You can inline parameters and S-functions using the
Simulink Coder software and the Target Language Compiler.

inlined parameters
(Target Language Compiler Boolean global variable: InlineParameters)
The numerical values of the block parameters are hard-coded into the
generated code. Advantages include faster execution and less memory
use, but you lose the ability to change the block parameter values at
run time.

inlined S-function
An S-function can be inlined into the generated code by implementing it
as a .tlc file. The code for this S-function is placed in the generated
model code itself. In contrast, noninlined S-functions require a function
call to an S-function residing in an external MEX-file.

interrupt service routine (ISR)
Piece of code that your processor executes when an external event, such
as a timer, occurs.

loop rolling
(Target Language Compiler global variable: RollThreshold) Depending
on the block’s operation and the width of the input/output ports, the
generated code uses a for statement (rolled code) instead of repeating
identical lines of code (flat code) over the signal width.

make
Utility to maintain, update, and regenerate related programs and files.
The commands to be executed are placed in a makefile.

makefiles
Files that contain a collection of commands that allow groups of
programs, object files, libraries, and so on, to interact. Makefiles are
executed by your development system’s make utility.

Glossary-4

Glossary

model.rtw
Intermediate record file into which the Simulink Coder build process
compiles the blocks, signals, states, and parameters for a model. The
Target Language Compiler reads this file to generate code to represent
the model.

multitasking
Process by which a microprocessor schedules the handling of multiple
tasks. In generated code, the number of tasks is equal to the number of
sample times in your model. See also pseudo multitasking.

noninlined S-function
In the context of the Simulink Coder build process, this is a C MEX
S-function that is not implemented using a customized .tlc file. If you
create a C MEX S-function as part of a Simulink model, it is by default
noninlined unless you write your own .tlc file that inlines it.

nonreal time
Simulation environment of a block diagram provided for high-speed
simulation of your model. Execution is not tied to a real-time clock.

nonvirtual block
A block that performs some algorithm, such as a Gain block. The
Simulink Coder build process generates code for nonvirtual blocks,
either inline or as separate functions and files, as directed by users.

pseudo multitasking
On processors that do not offer multitasking support, you can perform
pseudo multitasking by scheduling events on a fixed time sharing basis.

real-time model data structure
The Simulink Coder build process encapsulates information about the
root model in the real-time model data structure, often abbreviated as
rtM. rtM contains global information related to timing, solvers, and
logging, and model data such as inputs, outputs, states, and parameters.

real-time system
Computer that processes real-world events as they happen, under the
constraint of a real-time clock, and that can implement algorithms in

Glossary-5

Glossary

dedicated hardware. Examples include mobile telephones, test and
measurement devices, and avionic and automotive control systems.

Simulink Coder target
Set of code files generated by the Simulink Coder build process for a
standard or custom target, specified by a Simulink Coder configuration
component. These source files can be built into an executable program
that will run independently of Simulink. See also simulation target,
configuration.

run-time interface
Wrapper around the generated code that can be built into a stand-alone
executable. The run-time interface consists of routines to move the
time forward, save logged variables at specified time steps, and so on.
The run-time interface is responsible for managing the execution of the
real-time program created from your Simulink block diagram.

S-function
Customized Simulink block written in C, Fortran, or MATLAB® code.
The Simulink Coder build process can target C code S-functions as is or
users can inline C code S-functions by preparing TLC scripts for them.

simstruct
Simulink data structure and associated application program interface
(API) that enables S-functions to communicate with other entities in
models. Simstructs are included in code generated by the Simulink
Coder build process for noninlined S-functions.

simulation target
Set of code files generated for a model which is referenced by a Model
block. Simulation target code is generated into /slprj/sim project
folder in the working folder. Also an executable library compiled from
these codes that implements a Model block. See also Simulink Coder
target.

single-tasking
Mode in which a model runs in one task, regardless of the number of
sample rates it contains.

Glossary-6

Glossary

stiffness
Property of a problem that forces a numerical method, in one or more
intervals of integration, to use a step length that is excessively small in
relation to the smoothness of the exact solution in that interval.

system target file
Entry point to the Target Language Compiler program, used to
transform the Simulink Coder file into target-specific code.

target file
File that is compiled and executed by the Target Language Compiler.
The block and system target TLC files used specify how to transform
the Simulink Coder file model.rtw into target-specific code.

Target Language Compiler (TLC)
Program that compiles and executes system and target files by
translating a model.rtw file into a target language by means of TLC
scripts and template makefiles.

Target Language Compiler program
One or more TLC script files that describe how to convert a model.rtw
file into generated code. There is one TLC file for the target, plus one
for each built-in block. Users can provide their own TLC files to inline
S-functions or to wrap existing user code.

target system
Specific or generic computer system on which your real-time application
is intended to execute. Also referred to as embedded hardware.

targeting
Process of creating software modules for execution on your target
system.

task identifier (tid)
In generated code, each sample rate in a multirate model is assigned a
task identifier (tid). The tid is used by the model output and update
routines to control the portion of your model that should execute at
a given time step. Single-rate systems ignore the tid. See also base
sample rate.

Glossary-7

Glossary

template makefile
Line-for-line makefile used by a make utility. The Simulink Coder
build process converts the template makefile to a makefile by copying
the contents of the template makefile (usually system.tmf) to a
makefile (usually system.mk) replacing tokens describing your model’s
configuration.

virtual block
Connection or graphical block, for example a Mux block, without
algorithmic functionality. Virtual blocks do not incur real-time overhead
because code is not generated for them.

work vector
Data structures for saving internal states or similar information,
accessible to blocks that may require such work areas. These include
state work (rtDWork), real work (rtRWork), integer work (rtIWork), and
pointer work (rtPWork) structures. For example, the Memory block uses
a real work element for each signal.

Glossary-8

2

Function Reference

Build Information (p. 2-2) Set up and manage model build
information

Build Process (p. 2-4) Perform build process steps

Desktop IDEs and Desktop Targets
(p. 2-6)

Control IDEs and software build tool
chains for desktop targets

Model Entry Points (p. 2-8) Access entry points in generated
code for Simulink models

Project Documentation (p. 2-9) Document generated code

Rapid Simulation (p. 2-10) Get model parameter structures

System Target File Callback
Interface (p. 2-11)

Control Simulink Coder
configuration options in callbacks for
custom targets

Target Language Compiler and
Function Library (p. 2-12)

Optimize code generated for model
blocks

2 Function Reference

Build Information

addCompileFlags Add compiler options to model build
information

addDefines Add preprocessor macro definitions
to model build information

addIncludeFiles Add include files to model build
information

addIncludePaths Add include paths to model build
information

addLinkFlags Add link options to model build
information

addLinkObjects Add link objects to model build
information

addNonBuildFiles Add nonbuild-related files to model
build information

addSourceFiles Add source files to model build
information

addSourcePaths Add source paths to model build
information

addTMFTokens Add template makefile (TMF) tokens
that provide build-time information
for makefile generation

findIncludeFiles Find and add include (header) files
to build information object

getCompileFlags Compiler options from model build
information

getDefines Preprocessor macro definitions from
model build information

getFullFileList List of files from model build
information

getIncludeFiles Include files from model build
information

2-2

Build Information

getIncludePaths Include paths from model build
information

getLinkFlags Link options from model build
information

getNonBuildFiles Nonbuild-related files from model
build information

getSourceFiles Source files from model build
information

getSourcePaths Source paths from model build
information

packNGo Package model code in zip file for
relocation

updateFilePathsAndExtensions Update files in model build
information with missing paths and
file extensions

updateFileSeparator Change file separator used in model
build information

2-3

2 Function Reference

Build Process
RTW.getBuildDir Build folder information for specified

model

rtwbuild Initiate build process

rtwrebuild Rebuild generated code

rtw_precompile_libs Build libraries within model without
building model

Simulink.fileGenControl Specify root folders in which to put
files generated by diagram updates
and model builds

Simulink.ModelReference.protect Obscure referenced model contents
to hide intellectual property

switchTarget Specify target for configuration set

2-4

2 Function Reference

2-5

2 Function Reference

Desktop IDEs and Desktop Targets

In this section...

“IDE Automation Interface” on page 2-6

“XMakefile” on page 2-7

IDE Automation Interface

Eclipse IDE

activate Mark file, project, or build
configuration as active

add Add files to active project in IDE

address Memory address and page value of
symbol in IDE

build Build or rebuild current project

close Close project in IDE window

dir Files and folders in current IDE
window

display (IDE Object) Properties of IDE handle

eclipseide Create handle object to interact with
Eclipse IDE

eclipseidesetup Configure your coder product to
interact with Eclipse IDE

halt Halt program execution by processor

insert Insert debug point in file

isrunning Determine whether processor is
executing process

load Load program file onto processor

new Create project, library, or build
configuration in IDE

2-6

Desktop IDEs and Desktop Targets

open Open project in IDE

pwd Working folder used by Eclipse™

read Read data from processor memory

reload Reload most recent program file to
processor signal processor

remove Remove file, project, or breakpoint

restart Reload most recent program file to
processor signal processor

run Execute program loaded on processor

write Write data to processor memory
block

xmakefilesetup Configure your coder product to
generate makefiles

XMakefile

xmakefilesetup Configure your coder product to
generate makefiles

2-7

2 Function Reference

Model Entry Points
model_initialize Initialization entry point in

generated code for Simulink model

model_SetEventsForThisBaseStep Set event flags for multirate,
multitasking operation before calling
model_step for Simulink model —
not generated as of R2008a

model_step Step routine entry point in generated
code for Simulink model

model_terminate Termination entry point in generated
code for Simulink model

2-8

Project Documentation

Project Documentation
coder.report.close Close HTML code generation report

coder.report.generate Generate HTML code generation
report

coder.report.open Open existing HTML code generation
report

rtwreport Generate report documenting
generated code for model

rtwtrace Trace block to generated code

2-9

2 Function Reference

Rapid Simulation
rsimgetrtp Global model parameter structure

rsimsetrtpparam Set parameters of rtP model
parameter structure

2-10

System Target File Callback Interface

System Target File Callback Interface

slConfigUIGetVal Return current value for custom
target configuration option

slConfigUISetEnabled Enable or disable custom target
configuration option

slConfigUISetVal Set value for custom target
configuration option

2-11

2 Function Reference

Target Language Compiler and Function Library
tlc Invoke Target Language Compiler

to convert model description file to
generated code

See the “TLC Function Library Reference” for a list of Target Language
Compiler functions.

2-12

3

Alphabetical List

addCompileFlags

Purpose Add compiler options to model build information

Syntax addCompileFlags(buildinfo, options, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies
the compiler options to be added to the build information. The
function adds each option to the end of a compiler option vector. If
you specify multiple options within a single character array, for
example '-Zi -Wall', the function adds the string to the vector
as a single element. For example, if you add '-Zi -Wall' and
then '-O3', the vector consists of two elements, as shown below.

'-Zi -Wall' '-O3'

groups (optional)
A character array or cell array of character arrays that groups
specified compiler options. You can use groups to

• Document the use of specific compiler options

• Retrieve or apply collections of compiler options

You can apply

• A single group name to one or more compiler options

• Multiple group names to collections of compiler options
(available for non-makefile build environments only)

3-2

addCompileFlags

To... Specify groups as a...

Apply one group
name to one or more
compiler options

Character array.

Apply different group
names to compiler
options

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
options.

Note

• To specify compiler options to be used in the standard Simulink
Coder makefile build process, specify groups as either 'OPTS'
or 'OPT_OPTS'.

• To control compiler optimizations for your Simulink Coder
makefile build at Simulink GUI level, use the Compiler
optimization level parameter on the Code Generation pane
of the Simulink Configuration Parameters dialog box. The
Compiler optimization level parameter provides

— Target-independent values Optimizations on (faster
runs) and Optimizations off (faster builds), which
allow you to easily toggle compiler optimizations on and off
during code development

— The value Custom for entering custom compiler optimization
flags at Simulink GUI level (rather than at other levels of
the build process)

If you use the configuration parameter Make command to
specify compiler options for your Simulink Coder makefile
build using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or
MEX_OPT_FILE, the value of Compiler optimization level is
ignored and a warning is issued about the ignored parameter.

3-3

addCompileFlags

Description The addCompileFlags function adds specified compiler options to the
model build information. Simulink Coder stores the compiler options in
a vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples • Add the compiler option -O3 to build information myModelBuildInfo
and place the option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-O3', 'OPTS');

• Add the compiler options -Zi and -Wall to build information
myModelBuildInfo and place the options in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-Zi -Wall', 'OPT_OPTS');

• For a non-makefile build environment, add the compiler options -Zi,
-Wall, and -O3 to build information myModelBuildInfo. Place the
options -Zi and -Wall in the group Debug and the option -O3 in the
group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

{'Debug' 'MemOpt'});

See Also addDefines | addLinkFlags | getCompileFlags

How To • “Customize Post-Code-Generation Build Processing”

3-4

activate

Purpose Mark file, project, or build configuration as active

Syntax IDE_Obj.activate('objectname','type')

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Use the IDE_Obj.activate('objectname','type') method to make a
project file or build configuration active in the MATLAB session.

When you make a project, file, or build configuration active, methods
you invoke on the IDE handle object apply to that project, file, or build
configuration.

Input
Arguments

IDE_Obj

For IDE_Obj, enter the name of the IDE handle object you created using
a constructor function.

objectname

For objectname, enter the name of the project file or build configuration
to make active.

For project files, enter the full file name including the extension.

For build configurations, enter 'Debug', 'Release', or 'Custom'.
Before using the activate method on a build configuration, activate
the project that contains the build configuration. For more information
about configurations, see “Configuration” on page 6-295.

type

For type, enter the type of object to make active. If you omit the type
argument, type defaults to 'project'. Enter one of the following
strings for type:

• 'project' — Makes a specified project active.

• 'buildcfg'— Make a specified build configuration active

3-5

activate

IDE support for type

CCS Eclipse MULTI VisualDSP++

'project' Yes Yes Yes Yes

'buildcfg' Yes Yes Yes

Examples After using a constructor to create the IDE handle object, h, open
several projects, make the first one active, and build the project:

h.open('c:\temp\myproj1')
h.open('c:\temp\myproj2')
h.open('c:\temp\myproj3')
h.activate('c:\temp\myproj1', 'project')
h.build

After making a project active, make the 'debug' configuration active:

h.activate('debug','buildcfg')

See Also build | new | remove

3-6

add

Purpose Add files to active project in IDE

Syntax IDE_Obj.add(filename,filetype)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Use IDE_Obj.add(filename,filetype) to add an existing file to the
active project in the IDE. Using the add function is equivalent to
selecting Project > Add Files to Project in the IDE.

Before using add:

• Use the constructor function for your IDE to create an IDE handle
object, such as IDE_Obj.

• Create or open a project using the new or open methods.

• Make the project active in the IDE using the activate method.

You can add file types your IDE supports to your project. Consult the
documentation for your IDE for detailed information about supported
file types.

Supported File Types and Extensions

File Type
Extensions
Supported

CCS IDE Project
Folder

C/C++ source files .c, .cpp, .cc, .cxx,
.sa, .h,.hpp,.hxx

Source

Assembly source files .a*, .s* (excluding
.sa), .dsp

Source

Object and library
files

.o*, .lib, .doj, .dlb Libraries

Linker command file .cmd, .ldf Project Name

3-7

add

Supported File Types and Extensions (Continued)

File Type
Extensions
Supported

CCS IDE Project
Folder

VDK support file .vdk Not applicable

DSP/BIOS file (only
with CCS IDE)

.tcf DSP/BIOS Config

Note CCS IDE drops files in the project folder, indicated in the
right-most column of the preceding table.

Input
Arguments

add places the file specified by filename in the active project in the IDE.

IDE_Obj

IDE_Obj is a handle for an instance of the IDE. Before using a method,
the constructor function for your IDE to create IDE_Obj.

filename

filename is the name of the file to add to the active IDE project.

If you supply a filename without a path or relative path, your coder
product searches the IDE working folder first. It then searches the
folders on your MATLAB path. Add supported file types shown in the
preceding table.

filetype

filetype is an optional argument that specifies the file type. For
example, 'lib', 'src', 'header'.

Examples Start by creating an IDE handle object, such as IDE_Obj using the
constructor for your IDE. Then enter the following commands:

3-8

add

IDE_Obj.new('myproject','project'); % Create a new project.

IDE_Obj.add('sourcefile.c'); % Add a C source file.

See Also activate | | new | open | remove

3-9

addDefines

Purpose Add preprocessor macro definitions to model build information

Syntax addDefines(buildinfo, macrodefs, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

macrodefs
A character array or cell array of character arrays that specifies
the preprocessor macro definitions to be added to the object.
The function adds each definition to the end of a compiler
option vector. If you specify multiple definitions within a single
character array, for example '-DRT -DDEBUG', the function adds
the string to the vector as a single element. For example, if you
add '-DPROTO -DDEBUG' and then '-DPRODUCTION', the vector
consists of two elements, as shown below.

'-DPROTO -DDEBUG' '-DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups
specified definitions. You can use groups to

• Document the use of specific macro definitions

• Retrieve or apply groups of macro definitions

You can apply

• A single group name to one or more macro definitions

• Multiple group names to collections of macro definitions
(available for non-makefile build environments only)

3-10

addDefines

To... Specify groups as a...

Apply one group
name to one or more
macro definitions

Character array.

Apply different group
names to macro
definitions

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
macrodefs.

Note To specify macro definitions to be used in the standard
Simulink Coder makefile build process, specify groups as either
'OPTS' or 'OPT_OPTS'.

Description The addDefines function adds specified preprocessor macro definitions
to the model build information. The Simulink Coder software stores the
definitions in a vector. The function adds definitions to the end of the
vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you
can use an optional groups argument to group your options.

Examples • Add the macro definition -DPRODUCTION to build information
myModelBuildInfo and place the definition in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, '-DPRODUCTION', 'OPTS');

• Add the macro definitions -DPROTO and -DDEBUG to build information
myModelBuildInfo and place the definitions in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, ...

'-DPROTO -DDEBUG', 'OPT_OPTS');

3-11

addDefines

• For a non-makefile build environment, add the macro definitions
-DPROTO, -DDEBUG, and -DPRODUCTION to build information
myModelBuildInfo. Place the definitions -DPROTO and -DDEBUG in the
group Debug and the definition -DPRODUCTION in the group Release.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, ...

{'-DPROTO -DDEBUG' '-DPRODUCTION'}, ...
{'Debug' 'Release'});

See Also addCompileFlags | addLinkFlags | getDefines

How To • “Customize Post-Code-Generation Build Processing”

3-12

addIncludeFiles

Purpose Add include files to model build information

Syntax addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies
names of include files to be added to the build information.

The filename strings can include wildcard characters, provided
that the dot delimiter (.) is present. Examples are '*.*', '*.h',
and '*.h*'.

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the include files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified include files. You can use groups to

3-13

addIncludeFiles

• Document the use of specific include files

• Retrieve or apply groups of include files

You can apply

• A single group name to an include file

• A single group name to multiple include files

• Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name
to one or more include
files

Character array.

Apply different group
names to include files

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addIncludeFiles function adds specified include files to the model
build information. The Simulink Coder software stores the include files
in a vector. The function adds the filenames to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify
each optional argument as a character array or a cell array of character
arrays.

3-14

addIncludeFiles

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all include files it adds to
the build information

Cell array of character arrays Pairs each character array with a specified include file.
Thus, the length of the cell array must match the length of
the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string
('') for paths.

Note The packNGo function also can add include files to the model build
information. If you call the packNGo function to package model code,
packNGo finds include files from all source and include paths recorded
in the model build information and adds them to the build information.

Examples • Add the include file mytypes.h to build information
myModelBuildInfo and place the file in the group SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, ...
'mytypes.h', '/proj/src', 'SysFiles');

• Add the include files etc.h and etc_private.h to build information
myModelBuildInfo and place the files in the group AppFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, ...
{'etc.h' 'etc_private.h'}, ...
'/proj/src', 'AppFiles');

• Add the include files etc.h, etc_private.h, and mytypes.h to
build information myModelBuildInfo. Group the files etc.h and

3-15

addIncludeFiles

etc_private.h with the string AppFiles and the file mytypes.h
with the string SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, ...
{'etc.h' 'etc_private.h' 'mytypes.h'}, ...
'/proj/src', ...
{'AppFiles' 'AppFiles' 'SysFiles'});

• Add the .h files in a specified folder to build information
myModelBuildInfo and place the files in the group HFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, ...
'*.h', '/proj/src', 'HFiles');

See Also addIncludePaths | addSourceFiles | addSourcePaths
| findIncludeFiles | getIncludeFiles |
updateFilePathsAndExtensions | updateFileSeparator

How To • “Customize Post-Code-Generation Build Processing”

3-16

addIncludePaths

Purpose Add include paths to model build information

Syntax addIncludePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies
include file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

groups (optional)
A character array or cell array of character arrays that groups
specified include paths. You can use groups to

• Document the use of specific include paths

• Retrieve or apply groups of include paths

You can apply

• A single group name to an include path

• A single group name to multiple include paths

• Multiple group names to collections of multiple include paths

3-17

addIncludePaths

To... Specify groups as a...

Apply one group
name to one or more
include paths

Character array.

Apply different group
names to include
paths

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for paths.

Description The addIncludePaths function adds specified include paths to the
model build information. The Simulink Coder software stores the
include paths in a vector. The function adds the paths to the end of the
vector in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument. You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all
include paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the
length of the cell array must match
the length of the cell array you specify
for paths.

3-18

addIncludePaths

Examples • Add the include path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
'/etcproj/etc/etc_build');

• Add the include paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'},'etc');

• Add the include paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/lib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles | addSourceFiles | addSourcePaths
| getIncludePaths | updateFilePathsAndExtensions |
updateFileSeparator

How To • “Customize Post-Code-Generation Build Processing”

3-19

addLinkFlags

Purpose Add link options to model build information

Syntax addLinkFlags(buildinfo, options, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies
the linker options to be added to the build information. The
function adds each option to the end of a linker option vector. If
you specify multiple options within a single character array, for
example '-MD -Gy', the function adds the string to the vector as
a single element. For example, if you add '-MD -Gy' and then
'-T', the vector consists of two elements, as shown below.

'-MD -Gy' '-T'

groups (optional)
A character array or cell array of character arrays that groups
specified linker options. You can use groups to

• Document the use of specific linker options

• Retrieve or apply groups of linker options

You can apply

• A single group name to one or more linker options

• Multiple group names to collections of linker options (available
for non-makefile build environments only)

3-20

addLinkFlags

To... Specify groups as a...

Apply one group
name to one or more
linker options

Character array.

Apply different
group names to
linker options

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
options.

Note To specify linker options to be used in the standard
Simulink Coder makefile build process, specify groups as either
'OPTS' or 'OPT_OPTS'.

Description The addLinkFlags function adds specified linker options to the model
build information. The Simulink Coder software stores the linker
options in a vector. The function adds options to the end of the vector
based on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples • Add the linker -T option to build information myModelBuildInfo and
place the option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-T', 'OPTS');

• Add the linker options -MD and -Gy to build information
myModelBuildInfo and place the options in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-MD -Gy', 'OPT_OPTS');

3-21

addLinkFlags

• For a non-makefile build environment, add the linker options -MD,
-Gy, and -T to build information myModelBuildInfo. Place the
options -MD and-Gy in the group Debug and the option -T in the
groupTemp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, ...

{'Debug' 'Temp'});

See Also addCompileFlags | addDefines | getLinkFlags

How To • “Customize Post-Code-Generation Build Processing”

3-22

addLinkObjects

Purpose Add link objects to model build information

Syntax addLinkObjects(buildinfo, linkobjs, paths, priority,
precompiled, linkonly, groups)

All arguments except buildinfo , linkobjs, and paths are optional. If
you specify an optional argument, you must specify all of the optional
arguments preceding it.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

linkobjs
A character array or cell array of character arrays that specifies
the filenames of linkable objects to be added to the build
information. The function adds the filenames that you specify
in the function call to a vector that stores the object filenames
in priority order. If you specify multiple objects that have the
same priority (see priority below), the function adds them to
the vector based on the order in which you specify the object
filenames in the cell array.

The function removes duplicate link objects that

• You specify as input

• Already exist in the linkable object filename vector

• Have a path that matches the path of a matching linkable
object filename

A duplicate entry consists of an exact match of a path string and
corresponding linkable object filename.

paths
A character array or cell array of character arrays that specifies
paths to the linkable objects. If you specify a character array, the
path string applies to all linkable objects.

3-23

addLinkObjects

priority (optional)
A numeric value or vector of numeric values that indicates the
relative priority of each specified link object. Lower values have
higher priority. The default priority is 1000.

precompiled (optional)
The logical value true or false, or a vector of logical values that
indicates whether each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster
compiling and linking and exists in a specified location.

If precompiled is false (the default), the Simulink Coder build
process creates the link object in the build folder.

This argument is ignored if linkonly equals true.

linkonly (optional)
The logical value true or false, or a vector of logical values that
indicates whether each specified link object is to be used only
for linking.

Specify true if the Simulink Coder build process should not build,
nor generate rules in the makefile for building, the specified link
object, but should include it when linking the final executable.
For example, you can use this to incorporate link objects for which
source files are not available. If linkonly is true, the value of
precompiled is ignored.

If linkonly is false (the default), rules for building the link
objects are added to the makefile. In this case, the value
of precompiled determines which subsection of the added
rules is expanded, START_PRECOMP_LIBRARIES (true) or
START_EXPAND_LIBRARIES (false).

groups (optional)
A character array or cell array of character arrays that groups
specified link objects. You can use groups to

3-24

addLinkObjects

• Document the use of specific link objects

• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object

• A single group name to multiple linkable objects

• Multiple group name to collections of multiple linkable objects

To... Specify groups as a...

Apply one group
name to one or more
link objects

Character array.

Apply different group
names to link objects

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
linkobjs.

The default value of groups is {''}.

Description The addLinkObjects function adds specified link objects to the model
build information. The Simulink Coder software stores the link objects
in a vector in relative priority order. If multiple objects have the same
priority or you do not specify priorities, the function adds the objects to
the vector based on the order in which you specify them.

In addition to the required buildinfo, linkobjs, and paths arguments,
you can specify the optional arguments priority, precompiled,
linkonly, and groups. You can specify paths and groups as a character
array or a cell array of character arrays.

3-25

addLinkObjects

If You Specify paths or
groups as a...

The Function...

Character array Applies the character array to
all objects it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified object. Thus, the length
of the cell array must match the
length of the cell array you specify for
linkobjs.

Similarly, you can specify priority, precompiled, and linkonly as a
value or vector of values.

If You Specify priority,
precompiled, or linkonly
as a...

The Function...

Value Applies the value to all objects it adds
to the build information.

Vector of values Pairs each value with a specified
object. Thus, the length of the vector
must match the length of the cell
array you specify for linkobjs.

If you choose to specify an optional argument, you must specify all of
the optional arguments preceding it. For example, to specify that all
objects are precompiled using the precompiled argument, you must
specify the priority argument that precedes precompiled. You could
pass the default priority value 1000, as shown below.

addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

Examples • Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo and set the priorities of the objects to 26 and 10,
respectively. Since libobj2 is assigned the lower numeric priority

3-26

addLinkObjects

value, and thus has the higher priority, the function orders the
objects such that libobj2 precedes libobj1 in the vector.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/lib1' '/proj/lib/lib2'}, [26 10]);

• Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo. Mark both objects as link-only. Since individual
priorities are not specified, the function adds the objects to the vector
in the order specified.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/lib1' '/proj/lib/lib2'}, 1000,...
false, true);

• Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo. Set the priorities of the objects to 26 and 10,
respectively. Mark both objects as precompiled, and group them
under the name MyTest.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/lib1' '/proj/lib/lib2'}, [26 10],...
true, false, 'MyTest');

How To • “Customize Post-Code-Generation Build Processing”

3-27

addNonBuildFiles

Purpose Add nonbuild-related files to model build information

Syntax addNonBuildFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies
names of nonbuild-related files to be added to the build
information.

The filename strings can include wildcard characters, provided
that the dot delimiter (.) is present. Examples are '*.*',
'*.DLL', and '*.D*'.

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate nonbuild file entries that

• Already exist in the nonbuild file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the nonbuild files. The function adds the paths to the
end of a vector in the order that you specify them. If you specify
a single path as a character array, the function uses that path
for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified nonbuild files. You can use groups to

3-28

addNonBuildFiles

• Document the use of specific nonbuild files

• Retrieve or apply groups of nonbuild files

You can apply

• A single group name to a nonbuild file

• A single group name to multiple nonbuild files

• Multiple group names to collections of multiple nonbuild files

To... Specify groups as a...

Apply one group name
to one or more nonbuild
files

Character array.

Apply different group
names to nonbuild files

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addNonBuildFiles function adds specified nonbuild-related files,
such as DLL files required for a final executable, or a README file, to
the model build information. The Simulink Coder software stores the
nonbuild files in a vector. The function adds the filenames to the end of
the vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify
each optional argument as a character array or a cell array of character
arrays.

3-29

addNonBuildFiles

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all nonbuild files it adds
to the build information.

Cell array of character arrays Pairs each character array with a specified nonbuild file.
Thus, the length of the cell array must match the length
of the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string
('') for paths.

Examples • Add the nonbuild file readme.txt to build information
myModelBuildInfo and place the file in the group DocFiles.

myModelBuildInfo = RTW.BuildInfo;
addNonBuildFiles(myModelBuildInfo, ...
'readme.txt', '/proj/docs', 'DocFiles');

• Add the nonbuild files myutility1.dll and myutility2.dll to
build information myModelBuildInfo and place the files in the group
DLLFiles.

myModelBuildInfo = RTW.BuildInfo;
addNonBuildFiles(myModelBuildInfo, ...
{'myutility1.dll' 'myutility2.dll'}, ...
'/proj/dlls', 'DLLFiles');

• Add all of the DLL files in a specified folder to build information
myModelBuildInfo and place the files in the group DLLFiles.

myModelBuildInfo = RTW.BuildInfo;
addNonBuildFiles(myModelBuildInfo, ...
'*.dll', '/proj/dlls', 'DLLFiles');

See Also getNonBuildFiles

How To • “Customize Post-Code-Generation Build Processing”

3-30

address

Purpose Memory address and page value of symbol in IDE

Syntax a = IDE_Obj.address(symbol,scope)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description The a = IDE_Obj.address(symbol,scope) method returns the
memory address of the first matching symbol in the symbol table of
the most recently loaded program.

Because the address method returns the address and page values as a
structure, your programs can use the values directly. For example, the
IDE_Obj.read and IDE_Obj.write can use a as an input.

If the address method does not find the symbol in the symbol table, it
generates a warning and returns a null value.

Input
Arguments

a

Use a as a variable to capture the return values from the address
method.

IDE_Obj

IDE_Obj is a handle for an instance of the IDE. Before using a method,
use the constructor function for your IDE to create IDE_Obj.

symbol

symbol is the name of the symbol for which you are getting the memory
address and page values.

Symbol names are case sensitive.

For address to return an address, the symbol must be a valid entry in
the symbol table. If the address method does not find the symbol, it
generates a warning and leaves a empty.

3-31

address

scope

Optionally, you set the scope of the address method. Enter 'local' or
'global'. Use 'local' when the current scope of the program is the
desired function scope. If you omit the scope argument, the address
method uses 'local' by default.

Output
Arguments

If the address method does not find the symbol, it generates a warning
and does not return a value for a.

The address method only returns address information for the first
matching symbol in the symbol table.

For Code Composer Studio™

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

With TI C6000™ processors, the memory page value is 0.

For Eclipse

With Eclipse IDE, the addressmethod only returns the symbol address.
It does not return a value for page.

The return value, a, is the numeric value of the symbol address.

For MULTI®

With MULTI, address requires a linker command file (lcf) in your
project.

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

For VisualDSP++®

With VisualDSP++, address requires a linker command file (lcf) in
your project.

The return value a is a numeric array with the symbol’s start address,
a(1), and memory type, a(2).

3-32

address

Examples After you load a program to your processor, address lets you read
and write to specific entries in the symbol table for the program. For
example, the following function reads the value of symbol 'ddat' from
the symbol table in the IDE.

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'),'double',4)

ddat is an entry in the current symbol table. address searches for the
string ddat and returns a value when it finds a match. read returns
ddat to MATLAB software as a double-precision value as specified by
the string 'double'.

To change values in the symbol table, use address with write:

IDE_Obj.write(IDE_Obj.address('ddat'),double([pi 12.3 exp(-1)...

sin(pi/4)]))

After executing this write operation, ddat contains double-precision
values for π, 12.3, e-1, and sin(π/4). Use read to verify the contents
of ddat:

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'),'double',4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also load | read | write

3-33

addSourceFiles

Purpose Add source files to model build information

Syntax addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies
names of the source files to be added to the build information.

The filename strings can include wildcard characters, provided
that the dot delimiter (.) is present. Examples are '*.*', '*.c',
and '*.c*'.

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the source files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified source files. You can use groups to

3-34

addSourceFiles

• Document the use of specific source files

• Retrieve or apply groups of source files

You can apply

• A single group name to a source file

• A single group name to multiple source files

• Multiple group names to collections of multiple source files

To... Specify group as a...

Apply one group name
to one or more source
files

Character array.

Apply different group
names to source files

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addSourceFiles function adds specified source files to the model
build information. The Simulink Coder software stores the source files
in a vector. The function adds the filenames to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify
each optional argument as a character array or a cell array of character
arrays.

3-35

addSourceFiles

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all source files it adds to the
build information.

Cell array of character
arrays

Pairs each character array with a specified source file.
Thus, the length of the cell array must match the length of
the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string
('') for paths.

Examples • Add the source file driver.c to build information myModelBuildInfo
and place the file in the group Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, 'driver.c', ...
'/proj/src', 'Drivers');

• Add the source files test1.c and test2.c to build information
myModelBuildInfo and place the files in the group Tests.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, ...
{'test1.c' 'test2.c'}, ...
'/proj/src', 'Tests');

• Add the source files test1.c, test2.c, and driver.c to build
information myModelBuildInfo. Group the files test1.c and
test2.c with the string Tests and the file driver.c with the string
Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, ...
{'test1.c' 'test2.c' 'driver.c'}, ...
'/proj/src', ...
{'Tests' 'Tests' 'Drivers'});

3-36

addSourceFiles

• Add all of the .c files in a specified folder to build information
myModelBuildInfo and place the files in the group CFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, ...
'*.c', '/proj/src', 'CFiles');

See Also addIncludeFiles | addIncludePaths | addSourcePaths
| getSourceFiles | updateFilePathsAndExtensions |
updateFileSeparator

How To • “Customize Post-Code-Generation Build Processing”

3-37

addSourcePaths

Purpose Add source paths to model build information

Syntax addSourcePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies
source file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note The Simulink Coder software does not check whether a
specified path string is valid.

groups (optional)
A character array or cell array of character arrays that groups
specified source paths. You can use groups to

• Document the use of specific source paths

• Retrieve or apply groups of source paths

3-38

addSourcePaths

You can apply

• A single group name to a source path

• A single group name to multiple source paths

• Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name
to one or more source
paths

Character array.

Apply different group
names to source paths

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for paths.

Description The addSourcePaths function adds specified source paths to the model
build information. The Simulink Coder software stores the source paths
in a vector. The function adds the paths to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument . You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all
source paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the
length of the character array or cell
array must match the length of the
cell array you specify for paths.

3-39

addSourcePaths

Note The Simulink Coder software does not check whether a specified
path string is valid.

Examples • Add the source path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
'/etcproj/etc/etc_build');

• Add the source paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

• Add the source paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/lib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles | addIncludePaths | addSourceFiles
| getSourcePaths | updateFilePathsAndExtensions |
updateFileSeparator

How To • “Customize Post-Code-Generation Build Processing”

3-40

addTMFTokens

Purpose Add template makefile (TMF) tokens that provide build-time
information for makefile generation

Syntax addTMFTokens(buildinfo, tokennames, tokenvalues, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

tokennames
A character array or cell array of character arrays that specifies
names of TMF tokens (for example, '|>CUSTOM_OUTNAME<|') to
be added to the build information. The function adds the token
names to the end of a vector in the order that you specify them.

If you specify a token name that already exists in the vector,
the first instance takes precedence and its value is used for
replacement.

tokenvalues
A character array or cell array of character arrays that specifies
TMF token values corresponding to the previously-specified TMF
token names. The function adds the token values to the end of a
vector in the order that you specify them.

groups (optional)
A character array or cell array of character arrays that groups
specified TMF tokens. You can use groups to

• Document the use of specific TMF tokens

• Retrieve or apply groups of TMF tokens

You can apply

• A single group name to a TMF token

• A single group name to multiple TMF tokens

• Multiple group names to collections of multiple TMF tokens

3-41

addTMFTokens

To... Specify groups as a...

Apply one group name
to one or more TMF
tokens

Character array.

Apply different group
names to TMF tokens

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for tokennames.

Description Call the addTMFTokens function inside a post code generation command
to provide build-time information to help customize makefile generation.
The tokens specified in the addTMFTokens function call must be handled
in the template makefile (TMF) for the target selected for your model.
For example, if your post code generation command calls addTMFTokens
to add a TMF token named |>CUSTOM_OUTNAME<| that specifies an
output file name for the build, the TMF must take action with the value
of |>CUSTOM_OUTNAME<| to achieve the desired result. (See “Examples”
on page 3-43.)

The addTMFTokens function adds specified TMF token names and
values to the model build information. The Simulink Coder software
stores the TMF tokens in a vector. The function adds the tokens to the
end of the vector in the order that you specify them.

In addition to the required buildinfo, tokennames, and tokenvalues
arguments, you can specify an optional groups argument. You can
specify groups as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all TMF tokens it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified TMF token.
Thus, the length of the cell array must match the length
of the cell array you specify for tokennames.

3-42

addTMFTokens

Examples Inside a post code generation command, add the TMF token
|>CUSTOM_OUTNAME<| and its value to build information
myModelBuildInfo, and place the token in the group LINK_INFO.

myModelBuildInfo = RTW.BuildInfo;
addTMFTokens(myModelBuildInfo, ...

'|>CUSTOM_OUTNAME<|', 'foo.exe', 'LINK_INFO');

In the TMF for the target selected for your model, code such as the
following uses the token value to achieve the desired result:

CUSTOM_OUTNAME = |>CUSTOM_OUTNAME<|
...
target:
$(LD) -o $(CUSTOM_OUTNAME) ...

How To • “Customize Post-Code-Generation Build Processing”

3-43

build

Purpose Build or rebuild current project

Syntax [result,numwarns]=IDE_Obj.build(timeout)
IDE_Obj.build('all')

IDEs This function supports the following IDEs:

• Eclipse IDE

Description [result,numwarns]=IDE_Obj.build(timeout) incrementally builds
the active project. Incremental builds recompile only source files in
your project that you changed or added after the most recent build.
build uses the file time stamp to determine whether to recompile a file.
After recompiling the source files, build links the object files to make
a new program file.

The value of result is 1 when the build process completes. The value
of numwarns is the number of compilation warnings generated from
the build process.

The timeout argument defines the number of seconds MATLAB waits
for the IDE to complete the build process. If the IDE exceeds the
timeout period, this method returns a timeout error immediately. The
timeout error does not terminate the build process in the IDE. The IDE
continues the build process. The timeout error indicates that the build
process did not complete before the specified timeout period expired.
If you omit the timeout argument, the build method uses a default
value of 1000 seconds.

IDE_Obj.build('all') rebuilds the files in the active project.

See Also isrunning | open

3-44

close

Purpose Close project in IDE window

Syntax IDE_Obj.close(filename,'project')

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Use IDE_Obj.close(filename,'project') to close a specific project,
projects, or the active open project.

For the filename argument:

• To close the project files, enter 'all'.

• To close a specific project, enter the project file name, such as
'myProj'.If the file is not an open file in the IDE, MATLAB returns a
warning message.

• To close the active project, enter [].

With the VisualDSP++ IDE, to close the current project group (if
filename is 'all' or []), replace 'project'with 'projectgroup'.

Note

• The open method does not support the 'text' argument.

• Save changes to your files and projects in the IDE before you use
close. The close method does not save changes, nor does it prompt
you to save changes, before it closes the project.

Examples To close the open project files:

IDE_Obj.close('all','project')

To close the open project, myProj:

IDE_Obj.close('myProj','project')

3-45

close

To close the active open project:

IDE_Obj.close([],'project')

With the VisualDSP++ IDE, to close the open project groups:

IDE_Obj.close('all','projectgroup')

With the VisualDSP++ IDE, to close the active project group:

IDE_Obj.close([],'projectgroup')

See Also add | open

3-46

coder.report.close

Purpose Close HTML code generation report

Syntax coder.report.close()

Description coder.report.close() closes the HTML code generation report.

Concepts • “Reports for Code Generation”

3-47

coder.report.generate

Purpose Generate HTML code generation report

Syntax coder.report.generate(model)
coder.report.generate(subsystem)
coder.report.generate(model,Name,Value)

Description coder.report.generate(model) generates a code generation report
for the model. The build folder for the model must be present in the
current working folder.

coder.report.generate(subsystem) generates the code generation
report for the subsystem. The build folder for the subsystem must be
present in the current working folder.

coder.report.generate(model,Name,Value) generates the code
generation report according to the current model configuration and any
specified Name,Value arguments. Possible values for the Name,Value
arguments are parameters on the Code Generation > Report
pane. Using the Name,Value arguments, you can generate a report
with a different report configuration without modifying the model
configuration.

When you generate the report, the Web view includes the block diagram
attributes displayed in the Simulink Editor, such as, block sorted
execution order, signal properties, and port data types. Before calling
coder.report.generate, press Ctrl+D to update the model.

Input
Arguments

model

String specifying the name of a Simulink model.

subsystem

String specifying the name of a subsystem.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

3-48

coder.report.generate

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Each Name,Value argument corresponds to a parameter on the
Configuration Parameters Code Generation > Report pane. The
following parameters require an Embedded Coder license and is
enabled when the configuration parameter GenerateReport is on.
The Name,Value arguments are only used for generating the current
report, the arguments do not set the corresponding parameters in the
model configuration.

IncludeHyperlinkInReport

Specify on to include code-to-model hyperlinks that link code to the
corresponding blocks, Stateflow® objects, and MATLAB functions in the
model diagram. For more information, see “Code-to-model” on page
6-50.

Default: off

GenerateTraceInfo

Specify on to include model-to-code highlighting in the code generation
report. For more information, see “Model-to-code” on page 6-52.

Default: off

GenerateWebview

Specify on to include the model Web view in the code generation report.
For more information, see “Generate model Web view” on page 6-54.

Default: off

GenerateTraceReport

Specify on to include a summary of eliminated and virtual blocks in the
code generation report. For more information, see “Eliminated / virtual
blocks” on page 6-57.

3-49

coder.report.generate

Default: off

GenerateTraceReportSl

Specify on to include a summary of the Simulink blocks and the
corresponding code location in the code generation report. For more
information, see “Traceable Simulink blocks” on page 6-59.

Default: off

GenerateTraceReportSf

Specify on to include a summary of Stateflow objects and the
corresponding code location in the code generation report. For more
information, see “Traceable Stateflow objects” on page 6-61.

Default: off

GenerateTraceReportEml

Specify on to include a summary of the MATLAB functions and the
corresponding code locations in the code generation report. For more
information, see “Traceable MATLAB functions” on page 6-63.

Default: off

GenerateCodeMetricsReport

Specify on to include static code metrics in the code generation report.
For more information, see “Static code metrics” on page 6-65.

Default: off

Examples This example shows how to generate a code generation report to
include a static code metrics report after the build process and without
modifying the model.

1

3-50

coder.report.generate

Open the model rtwdemo_hyperlinks.

2

Build the model. The model is configured to automatically create and
open a code generation report.

rtwbuild('rtwdemo_hyperlinks');

3

Close the code generation report.

coder.report.close;

4

Generate a code generation report that includes the static code metrics
report.

coder.report.generate('rtwdemo_hyperlinks','GenerateCodeMetricsReport','on');

The code generation report opens. In the left navigation pane, click on
Static Code Metrics Report and view the report.

Alternatives • “Generate a Code Generation Report”

• “Generate Code Generation Report After Build Process”

See Also coder.report.open | coder.report.close

Concepts • “Reports for Code Generation”
• “Create code generation report” on page 6-45

3-51

coder.report.open

Purpose Open existing HTML code generation report

Syntax coder.report.open(model)
coder.report.open(subsystem)

Description coder.report.open(model) opens a code generation report for the
model. The build folder for the model must be present in the current
working folder.

coder.report.open(subsystem) opens the code generation report for
the subsystem. The build folder for the subsystem must be present in
the current working folder.

Input
Arguments

model

String specifying the name of a Simulink model.

subsystem

String specifying the name of a subsystem.

Examples After generating code for rtwdemo_counter, open a code generation
report for the model:

coder.report.open('rtwdemo_counter')

To open a code generation report for a subsystem:

coder.report.open('rtwdemo_counter/Amplifier')

Alternative • “Open Code Generation Report”

See Also coder.report.generate | coder.report.close

Concepts • “Reports for Code Generation”

3-52

dir

Purpose Files and folders in current IDE window

Syntax IDE_Obj.dir
d=IDE_Obj.dir

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.dir lists the files and folders in the IDE working folder, where
IDE_Obj is the object that references the IDE. IDE_Obj can be either
a single object, or a vector of objects. When IDE_Obj is a vector, dir
returns the files and folders referenced by each object.

d=IDE_Obj.dir returns the list of files and folders as an M-by-1
structure in d with the fields for each file and folder shown in the
following table.

Field Name Description

name Name of the file or folder.

date Date of most recent file or folder modification.

bytes Size of the file in bytes. Folders return 0 for
the number of bytes.

isdirectory 0 if it is a file, 1 if it is a folder.

datenum The Eclipse IDE and Code Composer Studio
IDE also return the modification date as a
MATLAB serial date number.

To view the entries in structure d, use an index in the syntax at the
MATLAB prompt, as shown by the following examples.

• d(3) returns the third element in the structure.

• d(10) returns the tenth element in the structure d.

• d(4).date returns the date field value for the fourth structure
element.

3-53

dir

See Also open

3-54

display (IDE Object)

Purpose Properties of IDE handle

Syntax IDE_Obj.display()

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.display() displays the properties and property values of the
IDE handleIDE_Obj.

For example, after you creating IDE_Obj with a constructor, using the
display method with IDE_Obj returns a set of properties and values:

IDE_Obj.display

IDE Object:
Property1 : valuea
Property2 : valueb
Property3 : valuec
Property4 : valued

See Also get

3-55

eclipseide

Purpose Create handle object to interact with Eclipse IDE

Syntax IDE_Obj = eclipseide
IDE_Obj = eclipseide('timeout', period)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Before using eclipseide for the first time:

• Install the versions of Eclipse IDE and related build tools described
in “Installing Third-Party Software for Eclipse”.

• Use the eclipseidesetup function to configure and install a plug-in
that enables your coder product to interact with Eclipse IDE.

Use IDE_Obj = eclipseide to create an IDE handle object, which you
can use to communicate with the Eclipse IDE and processors connected
to the Eclipse IDE. After creating the IDE handle object, you can use
the methods for the Eclipse IDE.

When you use eclipseide, your coder product uses the plug-in to open
a session with Eclipse. If Eclipse IDE is not already running, the
eclipseide function starts the Eclipse IDE. The session connects via
the IP port number and uses the workspace you specified previously
with eclipseidesetup.

When you build a model, the software uses eclipseide to create an
IDE handle object. In that case, the software gets the name of the IDE
handle object from the IDE link handle name parameter (default
value: IDE_Obj) in the configuration parameters for the model.

To assign a timeout period to the handle object, enter the following
command:

IDE_Obj = eclipseide('timeout', period)

For period, enter the number of seconds that the handle object waits
for processor operations (such as load) to complete. Operations that

3-56

eclipseide

exceed the timeout period generate timeout errors. The default period
is 10 seconds.

Examples For example, to create an object handle with a 20-second timeout
period, enter:

>> IDE_Obj = eclipseide('timeout',20)
Starting Eclipse(TM) IDE...

ECLIPSEIDE Object:
Default timeout : 20.00 secs
Eclipse folder : C:\eclipse3.4\eclipse
Eclipse workspace: C:\WINNT\Profiles\rdlugyhe\workspace
Port number : 5555
Processor site : local

See Also eclipseidesetup

3-57

eclipseidesetup

Purpose Configure your coder product to interact with Eclipse IDE

Syntax eclipseidesetup

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Before using eclipseidesetup for the first time, install the versions of
Eclipse IDE and related build tools described in “Installing Third-Party
Software for Eclipse”.

To avoid potential build errors later on, close Eclipse IDE before you
run eclipseidesetup. For more information, see Build Errors.

Use eclipseidesetup at the MATLAB command line to set up your
coder product to interact with Eclipse IDE. This action displays a dialog
box which you use to configure and add a plugin to the Eclipse IDE. For
detailed instructions and examples, see “Configuring Your MathWorks®

Software to Work with Eclipse”.

When to use eclipseidesetup:

• After you install or reinstall the Eclipse IDE.

• Before you use the eclipseide constructor function to create an IDE
handle object for the first time.

See Also eclipseide

3-58

findIncludeFiles

Purpose Find and add include (header) files to build information object

Syntax findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

extPatterns (optional)
A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

• Must start with *.

• Can include a combination of alphanumeric and underscore
(_) characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp
.x

Description The findIncludeFiles function

• Searches for include files, based on specified file name extension
patterns, in all source and include paths recorded in the model build
information object

• Adds the files found, along with their full paths, to the build
information object

• Deletes duplicate entries

Examples Find include files with filename extension .h that are in build
information object myModelBuildInfo, and add the full paths for the
files found to the object.

3-59

findIncludeFiles

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {fullfile(pwd,...
'mycustomheaders')}, 'myheaders');
findIncludeFiles(myModelBuildInfo);
headerfiles = getIncludeFiles(myModelBuildInfo, true, false);
headerfiles
headerfiles =

'W:\work\mycustomheaders\myheader.h'

See Also addIncludeFiles | getIncludeFiles | packNGo

How To • “Customize Post-Code-Generation Build Processing”

3-60

halt

Purpose Halt program execution by processor

Syntax IDE_Obj.halt
IDE_Obj.halt(timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.halt stops the program running on the processor. After you
issue this command, MATLAB waits for a response from the processor
that the processor has stopped. By default, the wait time is 10 seconds.
If 10 seconds elapses before the response arrives, MATLAB returns an
error. In this syntax, the timeout period defaults to the global timeout
period specified in IDE_Obj. Use IDE_Obj.get to determine the global
timeout period. However, the processor usually stops in spite of the
error message.

To resume processing after you halt the processor, use run. Also, the
IDE_Obj.read('pc') function can determine the memory address
where the processor stopped after you use halt.

IDE_Obj.halt(timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

Examples

Use one of the provided example programs to show how halt works.
Load and run one of the example projects. At the MATLAB prompt,
check whether the program is running on the processor.

IDE_Obj.isrunning

ans =

1

3-61

halt

IDE_Obj.isrunning % Alternate syntax for checking the run status.

ans =

1

IDE_Obj.halt % Stop the running application on the processor.

IDE_Obj.isrunning

ans =

0

Issuing the halt stops the process on the processor. Checking in the IDE
confirms that the process has stopped.

See Also isrunning | run

3-62

insert

Purpose Insert debug point in file

Syntax IDE_Obj.insert(addr,type,timeout)
IDE_Obj.insert(addr)
IDE_Obj.insert(file,line,type,timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.insert(addr,type,timeout) places a debug point at the
provided address of the processor. The IDE_Obj handle defines
the processor that will receive the new debug point. The debug
point location is defined by addr, the desired memory address. The
IDEs support several types of debug points. Refer to your IDE help
documentation for information on their respective behavior. The
following table shows which debug types each IDE supports.

CCS IDE Eclipse IDE MULTI VisualDSP++

'break'
(default)

Yes Yes Yes Yes

'watch' Yes Yes

'probe' Yes

The timeout parameter defines how long to wait (in seconds) for the
insert to complete. If this period is exceeded, the routine returns
immediately with a timeout error. In general the action (insert) still
occurs, but the timeout value gave insufficient time to verify the
completion of the action.

IDE_Obj.insert(addr) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_Obj
object. Use IDE_Obj.get('timeout') to examine this default timeout
value.

IDE_Obj.insert(file,line,type,timeout) places a debug point at
the specified line in a source file of Eclipse. The FILE parameter gives

3-63

insert

the name of the source file. LINE defines the line number to receive the
breakpoint. Eclipse IDE provides several types of debug points. Refer to
the previous list of supported debug point types. Refer to Eclipse IDE
documentation for information on their respective behavior.

IDE_Obj.insert(file,line) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_Obj
object. Use IDE_Obj.get('timeout') to examine this default timeout
value.

See Also address | run

3-64

isrunning

Purpose Determine whether processor is executing process

Syntax IDE_Obj.isrunning

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.isrunning returns 1 when the processor is executing a
program. When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

IDE_Obj.load('program.exe','program')
IDE_Obj.run
IDE_Obj.isrunning

ans =

1
IDE_Obj.halt
IDE_Obj.isrunning

ans =

0

See Also halt | load | run

3-65

getCompileFlags

Purpose Compiler options from model build information

Syntax options = getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you do not want the function to return.

Output
Arguments

Compiler options stored in the model build information.

Description The getCompileFlags function returns compiler options stored in
the model build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude
groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get the compiler options stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

'OPTS');
compflags=getCompileFlags(myModelBuildInfo);
compflags

3-66

getCompileFlags

compflags =

'-Zi -Wall' '-O3'

• Get the compiler options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, 'Debug');
compflags

compflags =

'-Zi -Wall'

• Get the compiler options stored in build information
myModelBuildInfo, except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, '', 'Debug');
compflags

compflags =

'-O3'

See Also addCompileFlags | getDefines | getLinkFlags

How To • “Customize Post-Code-Generation Build Processing”

3-67

getDefines

Purpose Preprocessor macro definitions from model build information

Syntax [macrodefs, identifiers, values] = getDefines(buildinfo,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you do not want the function to return.

Output
Arguments

Preprocessor macro definitions stored in the model build information.
The function returns the macro definitions in three vectors.

Vector Description

macrodefs Complete macro definitions with -D
prefix

identifiers Names of the macros

values Values assigned to the macros (anything
specified to the right of the first equals
sign) ; the default is an empty string ('')

3-68

getDefines

Description The getDefines function returns preprocessor macro definitions stored
in the model build information. When the function returns a definition,
it automatically

• Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

• Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of definitions the function
is to return.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get the preprocessor macro definitions stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, ...

{'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, 'OPTS');
[defs names values]=getDefines(myModelBuildInfo);
defs

defs =

'-DPROTO=first' '-DDEBUG' '-Dtest' '-DPRODUCTION'

names

names =

'PROTO'
'DEBUG'
'test'
'PRODUCTION'

values

3-69

getDefines

values =

'first'
''
''
''

• Get the preprocessor macro definitions stored with the group name
Debug in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, ...

{'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, ...
{'Debug' 'Debug' 'Debug' 'Release'});

[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs

defs =

'-DPROTO=first' '-DDEBUG' '-Dtest'

• Get the preprocessor macro definitions stored in build information
myModelBuildInfo, except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, ...

{'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, ...
{'Debug' 'Debug' 'Debug' 'Release'});

[defs names values]=getDefines(myModelBuildInfo, '', 'Debug');
defs

defs =

'-DPRODUCTION'

See Also addDefines | getCompileFlags | getLinkFlags

3-70

getDefines

How To • “Customize Post-Code-Generation Build Processing”

3-71

getFullFileList

Purpose List of files from model build information

Syntax [fPathNames, names] = getFullFileList(buildinfo, fcase)

fcase is optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

fcase (optional)
The string 'source', 'include', or 'nonbuild'. If the argument
is omitted, the function returns all files from the model build
information.

If You Specify... The Function...

'source' Returns source files from the model build
information.

'include' Returns include files from the model
build information.

'nonbuild' Returns nonbuild files from the model
build information.

Output
Arguments

Fully-qualified file paths and file names for files stored in the model
build information.

Note It is not required to resolve the path of every file in the model
build information, because the makefile for the model build will
resolve file locations based on source paths and rules. Therefore,
getFullFileList returns the path for each file only if a path was
explicitly associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and extensions
before calling getFullFileList.

3-72

getFullFileList

Description The getFullFileList function returns the fully-qualified paths
and names of all files, or files of a selected type (source, include, or
nonbuild), stored in the model build information.

The packNGo function calls getFullFileList to return a list of files in
the model build information before processing files for packaging.

Examples List the files stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
[fPathNames, names] = getFullFileList(myModelBuildInfo);

How To • “Customize Post-Code-Generation Build Processing”

3-73

getIncludeFiles

Purpose Include files from model build information

Syntax files = getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

Note It is not required to resolve the path of every file in
the model build information, because the makefile for the
model build will resolve file locations based on source paths
and rules. Therefore, specifying true for concatenatePaths
returns the path for each file only if a path was explicitly
associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and
extensions before calling getIncludeFiles.

replaceMatlabroot
The logical value true or false.

3-74

getIncludeFiles

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation folder.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you do not want the function to return.

Output
Arguments

Names of include files stored in the model build information. The
names include any files you added using the addIncludeFiles function
and, if you called the packNGo function, any files packNGo found and
added while packaging model code.

Description The getIncludeFiles function returns the names of include files
stored in the model build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of include files the function
returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get the include paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...

'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...

3-75

getIncludeFiles

'/common/lib'}, {'etc' 'etc' 'shared'});

incfiles=getIncludeFiles(myModelBuildInfo, true, false);

incfiles

incfiles =

[1x22 char] [1x36 char] [1x21 char]

• Get the names of include files in group etc that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, false, false,...
'etc');
incfiles

incfiles =

'etc.h' 'etc_private.h'

See Also addIncludeFiles | findIncludeFiles | getIncludePaths |
getSourceFiles | getSourcePaths | updateFilePathsAndExtensions

How To • “Customize Post-Code-Generation Build Processing”

3-76

getIncludePaths

Purpose Include paths from model build information

Syntax files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation folder.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you do not want the function to return.

Output
Arguments

Paths of include files stored in the model build information.

Description The getIncludePaths function returns the names of include file paths
stored in the model build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of include file paths the function returns.

3-77

getIncludePaths

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get the include paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
'/etcproj/etc/etc_build' '/common/lib'},...
{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false);
incpaths

incpaths =

'\etc\proj\etclib' [1x22 char] '\common\lib'

• Get the paths in group shared that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
'/etcproj/etc/etc_build' '/common/lib'},...
{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false, 'shared');
incpaths

incpaths =

'\common\lib''

See Also addIncludePaths | getIncludeFiles | getSourceFiles |
getSourcePaths

How To • “Customize Post-Code-Generation Build Processing”

3-78

getLinkFlags

Purpose Link options from model build information

Syntax options=getLinkFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array that specifies groups of linker flags
you want the function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker
flags you do not want the function to return. To exclude groups
and not include specific groups, specify an empty cell array ('')
for includeGroups.

Output
Arguments

Linker options stored in the model build information.

Description The getLinkFlags function returns linker options stored in the model
build information. Using optional includeGroups and excludeGroups
arguments, you can selectively include or exclude groups of options
the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

3-79

getLinkFlags

Examples • Get the linker options stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, 'OPTS');
linkflags=getLinkFlags(myModelBuildInfo);
linkflags

linkflags =

'-MD -Gy' '-T'

• Get the linker options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, ...

{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, {'Debug'});
linkflags

linkflags =

'-MD -Gy'

• Get the linker options stored in build information myModelBuildInfo,
except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, ...

{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, '', {'Debug'});
linkflags

linkflags =

'-T'

See Also addLinkFlags | getCompileFlags | getDefines

3-80

getLinkFlags

How To • “Customize Post-Code-Generation Build Processing”

3-81

getNonBuildFiles

Purpose Nonbuild-related files from model build information

Syntax files=getNonBuildFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

Note It is not required to resolve the path of every file in the
model build information, because the makefile for the model
build will resolve file locations based on source paths and rules.
Therefore, specifying true for concatenatePaths returns the
path for each file only if a path was explicitly associated with the
file when it was added.

replaceMatlabroot
The logical value true or false.

3-82

getNonBuildFiles

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation folder.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of nonbuild files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of nonbuild files you do not want the function to return.

Output
Arguments

Names of nonbuild files stored in the model build information.

Description The getNonBuildFiles function returns the names of nonbuild-related
files, such as DLL files required for a final executable, or a README
file, stored in the model build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function
includes paths and your MATLAB root definition in the output it
returns. Using optional includeGroups and excludeGroups arguments,
you can selectively include or exclude groups of nonbuild files the
function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples Get the nonbuild filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles(myModelBuildInfo, {'readme.txt' 'myutility1.dll'...

'myutility2.dll'});

3-83

getNonBuildFiles

nonbuildfiles=getNonBuildFiles(myModelBuildInfo, false, false);

nonbuildfiles

nonbuildfiles =

'readme.txt' 'myutility1.dll' 'myutility2.dll'

See Also addNonBuildFiles

How To • “Customize Post-Code-Generation Build Processing”

3-84

getSourceFiles

Purpose Source files from model build information

Syntax srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

Note It is not required to resolve the path of every file in
the model build information, because the makefile for the
model build will resolve file locations based on source paths
and rules. Therefore, specifying true for concatenatePaths
returns the path for each file only if a path was explicitly
associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and
extensions before calling getSourceFiles.

replaceMatlabroot
The logical value true or false.

3-85

getSourceFiles

If You Specify... The Function...

true Replaces path tokens, such as
$(MATLAB_ROOT) and $(START_DIR),
with the absolute path string.

false Does not replace path tokens with the
absolute path string.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you do not want the function to return.

Output
Arguments

Names of source files stored in the model build information.

Description The getSourceFiles function returns the names of source files
stored in the model build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function
includes paths and expansions of path tokens in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get the source paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c' 'driver.c'}, '',...
{'Tests' 'Tests' 'Drivers'});
srcfiles=getSourceFiles(myModelBuildInfo, false, false);

3-86

getSourceFiles

srcfiles

srcfiles =

'test1.c' 'test2.c' 'driver.c'

• Get the names of source files in group tests that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, {'test1.c' 'test2.c'...
'driver.c'}, {'/proj/test1' '/proj/test2'...
'/drivers/src'}, {'tests', 'tests', 'drivers'});
incfiles=getSourceFiles(myModelBuildInfo, false, false,...
'tests');
incfiles

incfiles =

'test1.c' 'test2.c'

See Also addSourceFiles | getIncludeFiles | getIncludePaths |
getSourcePaths | updateFilePathsAndExtensions

How To • “Customize Post-Code-Generation Build Processing”

3-87

getSourcePaths

Purpose Source paths from model build information

Syntax files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input
Arguments

buildinfo
Build information returned by RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you do not want the function to return.

Output
Arguments

Paths of source files stored in the model build information.

Description The getSourcePaths function returns the names of source file paths
stored in the model build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of source file paths the function returns.

3-88

getSourcePaths

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get the source paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/test1'...
'/proj/test2' '/drivers/src'}, {'tests' 'tests'...
'drivers'});
srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths

srcpaths =

'\proj\test1' '\proj\test2' '\drivers\src'

• Get the paths in group tests that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/test1'...
'/proj/test2' '/drivers/src'}, {'tests' 'tests'...
'drivers'});
srcpaths=getSourcePaths(myModelBuildInfo, true, 'tests');
srcpaths

srcpaths =

'\proj\test1' '\proj\test2'

• Get a path stored in build information myModelBuildInfo. First get
the path without replacing $(MATLAB_ROOT) with an absolute path,
then get it with replacement. The MATLAB root folder in this case is
\\myserver\myworkspace\matlab.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(matlabroot,...
'rtw', 'c', 'src'));

3-89

getSourcePaths

srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths{:}

ans =

$(MATLAB_ROOT)\rtw\c\src

srcpaths=getSourcePaths(myModelBuildInfo, true);
srcpaths{:}

ans =

\\myserver\myworkspace\matlab\rtw\c\src

See Also addSourcePaths | getIncludeFiles | getIncludePaths |
getSourceFiles

How To • “Customize Post-Code-Generation Build Processing”

3-90

load

Purpose Load program file onto processor

Syntax IDE_Obj.load(filename,timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.load(filename,timeout) loads the file specified by the
filename argument to the processor.

The filename argument can include a full path to the file, or the name
of a file in the IDE working folder.

With the VisualDSP++, MULTI, and Code Composer Studio IDEs, you
can use the cd method to check or modify the IDE working folder.

For MULTI, you can add an option argument after filename to specify
options for the 'prepare_target' command in MULTI debugger. Refer
to the MULTI documentation for information on 'prepare_target'.

Only use load with program files created by the IDE build process.

The timeout argument defines the number of seconds MATLAB waits
for the load process to complete. If the time-out period expires before
the load process returns a completion message, MATLAB generates an
error and returns. Usually the program load process works in spite of
the error message.

If you omit the timeout argument, load uses the timeout
property of the IDE handle object, which you can get by entering
IDE_Obj.get('timeout').

Using load with Eclipse IDE

With Eclipse IDE:

• Before using load, use activate to make the project associated with
the executable file active.

• For the filename argument, use a relative or absolute path to specify
the executable file.

3-91

load

A relative path consists of:

project/configuration/executablefile

An absolute path consists of:

workspace/project/configuration/executablefile

If the workspace is not the active workspace when you use load, the
software generates errors.

If the project is not the active project when you use load, the software
makes the project active.

If the software generates socket server errors when you use methods
with a Eclipse IDE handle object, such as IDE_Obj:

1 Delete the handle object from the MATLAB workspace.

2 Reconnect to the Eclipse IDE using the eclipseide constructor.

Examples IDE_Obj.load(programfile)
run(id)

See Also dir | open

3-92

model_initialize

Purpose Initialization entry point in generated code for Simulink model

Syntax void model_initialize(void)

Description The generated model_initialize function contains the model
initialization code for a Simulink model and should be called at the
beginning of model execution.

See Also model_SetEventsForThisBaseStep | model_step | model_terminate

How To • “Entry Point Functions and Scheduling”

• Command Line Information

3-93

model_SetEventsForThisBaseStep

Purpose Set event flags for multirate, multitasking operation before calling
model_step for Simulink model — not generated as of R2008a

Syntax void model_SetEventsForThisBaseStep(boolean_T *eventFlags)
void model_SetEventsForThisBaseStep(boolean_T *eventFlags,
RT_MODEL_model *model_M)

Arguments eventFlags
Pointer to the model’s event flags array.

model_M
Pointer to the real-time model object. The Embedded Coder
software generates this argument only if Generate reusable
code is on.

Description Versions of the Embedded Coder software prior to R2008a generate
the model_SetEventsForThisBaseStep function for multirate,
multitasking models. The function maintains model event flags that
determine which subrate tasks need to run on a given base rate time
step. In a multirate, multitasking application, the program code must
call model_SetEventsForThisBaseStep before calling the model_step
function.

Note The macro MODEL_SETEVENTS, defined in the static ert_main.c
module, provides a way to call model_SetEventsForThisBaseStep from
a static main program.

Note Simulink Coder and Embedded Coder do not generate this
function and you should avoid using it. The model event flags are now
maintained by code in the example main program for a model. For
more information, see “Optimize Multirate Multitasking Operation
on RTOS Targets”.

3-94

model_SetEventsForThisBaseStep

See Also model_initialize | model_step | model_terminate

How To • “Entry Point Functions and Scheduling”

3-95

model_step

Purpose Step routine entry point in generated code for Simulink model

Syntax void model_step(void)
void model_stepN(void)

Calling
Interfaces

The model_step default function prototype varies depending on the
Tasking mode for periodic sample times (SolverMode) parameter
specified for the model:

Tasking Mode Function Prototype

SingleTasking
(single-rate or multirate)

void model_step(void);

MultiTasking
(multirate)

void model_stepN (void);
(N is a task identifier)

Note If you use Embedded Coder to generate reusable, reentrant code
for an ERT-based model using the Generate reusable code option,
the generated code passes the model’s root-level inputs and outputs,
block states, parameters, and external outputs to model_step using a
function prototype that generally resembles the following:

void model_step(inport_args, outport_args, BlockIO_arg, DWork_arg, RT_model_arg);

The manner in which the inport and outport arguments are passed is
determined by the setting of the Pass root-level I/O as parameter,
which appears on the Interface pane of the Configuration Parameters
dialog box only if Generate reusable code is selected.

3-96

model_step

For greater control over the model_step function prototype, you can
use the Configure Model Functions button on the Interface pane
to launch a Model Interface dialog box (see “Configure Function
Prototypes Using Graphical Interfaces” in the Embedded Coder
documentation). Based on the Function specification value you
specify for your model_step function (supported values include Default
model initialize and step functions and Model specific C
prototypes), you can preview and modify the function prototype. Once
you validate and apply your changes, you can generate code based on
your function prototype modifications. For more information about
controlling the model_step function prototype, see the sections in “Code
Generation Pane: Interface” on page 6-160 and “Function Prototype
Control” in the Embedded Coder documentation.

Description The generated model_step function contains the output and update code
for the blocks in a Simulink model. The model_step function computes
the current value of the blocks. If logging is enabled, model_step
updates logging variables. If the model’s stop time is finite, model_step
signals the end of execution when the current time equals the stop time.

Under the following conditions, model_step does not check the current
time against the stop time:

• The model’s stop time is set to inf.

• Logging is disabled.

• The Terminate function required option is not selected.

Therefore, if one or more of these conditions are true, the program runs
indefinitely.

For an ERT-based model, the software generates a model_step function
when the Single output/update function configuration option is
selected (the default) in the Configuration Parameters dialog box.

model_step is designed to be called at interrupt level from rt_OneStep,
which is assumed to be invoked as a timer ISR. rt_OneStep calls
model_step to execute processing for one clock period of the model.

3-97

model_step

See “rt_OneStep and Scheduling Considerations” in the Embedded
Coder documentation for a description of how calls to model_step are
generated and scheduled.

Note For an ERT-based model, if the Single output/update
function configuration option is not selected, the Embedded Coder
software generates the following model entry point functions in place
of model_step:

• model_output: Contains the output code for the blocks in the model

• model_update: Contain the update code for the blocks in the model

See Also model_initialize | model_SetEventsForThisBaseStep |
model_terminate

How To • “Entry Point Functions and Scheduling”

3-98

model_terminate

Purpose Termination entry point in generated code for Simulink model

Syntax void model_terminate(void)

Description The generated model_terminate function contains the termination code
for a Simulink model and should be called as part of system shutdown.

When model_terminate is called, blocks that have a terminate function
execute their terminate code. If logging is enabled, model_terminate
ends data logging.

The model_terminate function should be called only once.

For an ERT-based model, the Embedded Coder software generates
the model_terminate function for a model when the Terminate
function required configuration option is selected (the default) in
the Configuration Parameters dialog box. If your application runs
indefinitely, you do not need the model_terminate function. To
suppress the function, clear the Terminate function required
configuration option in the Configuration Parameters dialog box.

See Also model_initialize | model_SetEventsForThisBaseStep | model_step

How To • “Entry Point Functions and Scheduling”

3-99

new

Purpose Create project, library, or build configuration in IDE

Syntax IDE_Obj.new('name','type')

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.new('name','type') creates a project, library, or build
configuration in the IDE.

The name argument specifies the name of the new project, library, or
build configuration

The type argument specifies whether to create a project, library, or
build configuration. The options are:

• 'project' — Executable project. Sometimes this file is called a
“DSP executable file”.

• 'projlib' — Library project.

• 'projext' — External make project. Only the CCS IDE supports
this option.

• 'buildcfg' — Build configuration in the active project. Only the
VisualDSP++ and CCS IDEs support this option.

When type is 'project' or 'projlib' , name can include the full path
to the new file. You can use the path to differentiate two files with
the same name. If you omit the path, the new method creates the file
or project in the current IDE working folder.

If you omit the type argument, and the name argument does not include
a file extension, type defaults to 'project'.

When type is 'buildcfg', use a unique name to differentiate the build
configuration from other build configurations in the active project.

The new method does not support 'text' as a type argument.

3-100

new

Examples IDE_Obj.new('my_project','project') #Create an IDE project, 'my_project.gpj'

IDE_Obj.new('my_build_config','buildcfg') #Create a build configuration.

See Also activate | close

3-101

open

Purpose Open project in IDE

Syntax IDE_Obj.open(filename,filetype,timeout)
IDE_Obj.open(myproject)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.open(filename,filetype,timeout) opens a project in the
IDE.

Use the filename argument to specify the file name, including the file
name extension. If the filename does not include a file name extension,
you can specify the file type using the filetype argument. If the file
does not exist in the current project or folder path, MATLAB returns a
warning and returns control to MATLAB.

For the optional filetype argument, you can specify the following
types.

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'project'
— Project
files

Yes Yes Yes Yes

'ProjectGroup'
— Project
group files

No No No Yes

'program'
— Target
program file
(executable)

No. Use
load
instead.

No Yes No

If you omit the filetype argument, filetype defaults to 'project'.

3-102

open

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish opening the file before returning
an error. If you omit the timeout argument, the open method uses
the timeout property of the IDE handle object (IDE_Obj) instead. The
timeout error does not terminate the loading process on the IDE.

Note The open method does not support the 'text', 'program', or
'workspace' arguments.

Examples IDE_Obj.open(myproject) opens the myproject project in the IDE.
dir | load | new

3-103

packNGo

Purpose Package model code in zip file for relocation

Syntax packNGo(buildinfo, propVals...)

propVals is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

propVals (optional)
A cell array of property-value pairs that specify packaging details.

To... Specify Property... With Value...

Package model code files in a zip file as
a single, flat folder

'packType' 'flat' (default)

Package model code files hierarchically
in a primary zip file that contains
three secondary zip files:
• mlrFiles.zip — files in your

matlabroot folder tree

• sDirFiles.zip— files in and under
your build folder

• otherFiles.zip — required files
not in the matlabroot or start
folder trees

'packType' 'hierarchical'Paths
for files in the
secondary zip files
are relative to the root
folder of the primary
zip file.

Specify a file name for the primary zip
file

'fileName' 'string'
Default:'model.zip'
If you omit the .zip file
extension, the function
adds it for you.

Include only the minimal header files
required to build the code in the zip file

'minimalHeaders' true (default)

Include all header files found on the
include path in the zip file

'minimalHeaders' false

3-104

packNGo

Description The packNGo function packages the following code files in a compressed
zip file so you can relocate, unpack, and rebuild them in another
development environment:

• Source files (for example, .c and .cpp files)

• Header files (for example, .h and .hpp files)

• Nonbuild-related files (for example, .dll files required for a final
executable and .txt informational files)

• MAT-file that contains the model build information object (.mat file)

You might use this function to relocate files so they can be recompiled for
a specific target environment or rebuilt in a development environment
in which MATLAB is not installed.

By default, the function packages the files as a flat folder structure in
a zip file named model.zip. You can tailor the output by specifying
property name and value pairs as explained above.

After relocating the zip file, use a standard zip utility to unpack the
compressed file.

Note The packNGo function potentially can modify the build
information passed in the first packNGo argument. As part of packaging
model code, packNGo might find additional files from source and include
paths recorded in the model’s build information and add them to the
build information.

Examples • Package the code files for model zingbit in the file zingbit.zip
as a flat folder structure.

set_param('zingbit','PostCodeGenCommand','packNGo(buildInfo);');

Then, rebuild the model.

• Package the code files for model zingbit in the file portzingbit.zip
and maintain the relative file hierarchy.

3-105

packNGo

cd zingbat_grt_rtw;
load buildInfo.mat
packNGo(buildInfo, {'packType', 'hierarchical', ...
'fileName', 'portzingbit'});

Alternatives You can configure model code packaging by selecting the Package
code and artifacts option on the Code Generation pane of the
Configuration Parameters dialog box.

How To • “Customize Post-Code-Generation Build Processing”

• “Relocate Code to Another Development Environment”

• “packNGo Function Limitations”

3-106

pwd

Purpose Working folder used by Eclipse

Syntax wd= IDE_Obj.pwd

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Use wd= IDE_Obj.pwd to get the working folder of the Eclipse IDE. This
value is the same as the Eclipse IDE workspace folder.

Examples To get the Eclipse IDE working folder:

IDE_Obj = eclipseide;
wd = IDE_Obj.pwd

wd =

C:\WINNT\Profiles\rdlugyhe\workspace

See Also dir

3-107

read

Purpose Read data from processor memory

Syntax mem=IDE_Obj.read(address)
mem=IDE_Obj.read(…,datatype)
mem=IDE_Obj.read(…,count)
mem=IDE_Obj.read(…,memorytype)
mem=IDE_Obj.read(…,timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description mem=IDE_Obj.read(address) returns a block of data values from
the memory space of the processor referenced by IDE_Obj. The block
to read begins from the DSP memory location given by the address
argument. The data is read starting from address without regard
to type-alignment boundaries in the processor. Conversely, the byte
ordering defined by the data type is automatically applied.

The address argument is a decimal or hexadecimal representation of
a memory address in the processor. The full memory address consist
of two parts:

• The start address

• The memory type
You can define the memory type value can be explicitly using a numeric
vector representation of the address.

Alternatively, the IDE_Obj object has a default memory type value that
is applied if the memory type value is not explicitly incorporated in
the passed address parameter. In DSP processors with only a single
memory type, it is possible to specify addresses using the abbreviated
(implied memory type) format by setting the IDE_Obj object memory
type value to zero.

3-108

read

Note You cannot read data from processor memory while the processor
is running.

Provide the address argument either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table show how read uses the address
parameter.

address
Parameter Value

Description

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This action is the same as specifying [131082
0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

myaddress1 myaddress1{1}=131072;
myadddress1{2}='Program(PM) Memory';

myaddress2 myaddress2{1}='20000';
myadddress2{2}='Program(PM) Memory';

3-109

read

myaddress3 myaddress3{1}=131072; myaddress3{2}=0;

mem=IDE_Obj.read(…,datatype) where the input argument datatype
defines the interpretation of the raw values read from DSP memory.
Parameter datatype specifies the data format of the raw memory
image. The data is read starting from address without regard to data
type alignment boundaries in the processor. The byte ordering defined
by the data type is automatically applied. This syntax supports the
following MATLAB data types.

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

The read method does not coerce data type alignment. Some
combinations of address and datatype will be difficult for the processor
to use.

mem=IDE_Obj.read(…,count) adds the count input parameter that
defines the dimensions of the returned data block mem. To read a block

3-110

read

of multiple data values. Specify count to determine how many values
to read from address. count can be a scalar value that causes read
to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements in
the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the
dimensions of the returned data array mem as shown in the following
table.

• n — Read n values into a column vector.

• [m,n]—Read m-by-n values into m by nmatrix in column-major order.

• [m,n,...] — Read a multidimensional matrix m-by-n-by…of values
into an m-by-n-by…array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem=IDE_Obj.read(…,memorytype) adds an optional input argument
memorytype. Object IDE_Obj has a default memory type value 0 that
read applies if the memory type value is not explicitly incorporated
into the passed address parameter.

In processors with only a single memory type, it is possible to specify
addresses using the implied memory type format by setting the
IDE_Objmemorytype property value to zero.

Using read with MULTI

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for
memorytype

Numerical Entry for
memorytype

Processor
Support

'program(pm)
memory'

0 Blackfin and
SHARC

'data(dm) memory' 1 SHARC

3-111

read

String Entry for
memorytype

Numerical Entry for
memorytype

Processor
Support

'data(dm) short
word memory'

2 SHARC

'external data(dm)
byte memory'

3 SHARC

'boot(prom)
memory'

4 SHARC

mem=IDE_Obj.read(…,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified read
process to complete. If the time-out period expires before the read
process returns a completion message, MATLAB returns an error and
returns. Usually the read process works in spite of the error message.

Examples This example reads one 16-bit integer from memory on the processor.

mlvar = IDE_Obj.read(131072,'int16')

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32-bit integers from the address 0x20000 and plots the
result in MATLAB.

data = IDE_Obj.read('20000','int32',100)
plot(double(data))

See Also write

3-112

reload

Purpose Reload most recent program file to processor signal processor

Syntax s = IDE_Obj.reload(timeout)
s = IDE_Obj.reload

IDEs This function supports the following IDEs:

• Eclipse IDE

Description s = IDE_Obj.reload(timeout) resends the most recently loaded
program file to the processor. If you have not loaded a program file
in the current session (so there is no previously loaded file), reload
returns the null entry [] in s indicating that it could not load a file to
the processor. Otherwise, s contains the full path name to the program
file. After you reset your processor or after an event produces changes
in your processor memory, use reload to restore the program file to
the processor for execution.

To limit the time the IDE spends trying to reload the program file to the
processor, timeout specifies how long the load process can take. If the
load process exceeds the timeout limit, the IDE stops trying to load the
program file and returns an error stating that the time period expired.
Exceeding the allotted time for the reload operation usually indicates
that the reload was complete but the IDE did not receive confirmation
before the timeout period passed.

s = IDE_Obj.reload reloads the most recent program file, using the
timeout value set when you created link IDE_Obj, the global timeout
setting.

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the
reloading function for each processor represented by IDE_Obj, reloading
the most recently loaded program on each processor.

This action is the same as calling reload for each processor individually
through IDE handle objects for each one.

3-113

reload

Examples After you create an object that connects to the IDE, use the available
methods to reload your most recently loaded project. If you have not
loaded a project in this session, reload returns an error and an empty
value for s. Loading a project eliminates the error. First, create an IDE
handle object, such as IDE_Obj, using the constructor for your IDE.

s=IDE_Obj.reload(23)

Warning: No action taken - load a valid Program file before

you reload...

s =

''

IDE_Obj.open('D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt','project')

IDE_Obj.build

IDE_Obj.load('hellodsp.pjt') #This file extension varies by IDE

IDE_Obj.halt

s=IDE_Obj.reload(23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

load | open

3-114

remove

Purpose Remove file, project, or breakpoint

Syntax IDE_Obj.remove(filename,filetype)
IDE_Obj.remove(addr,debugtype,timeout)
IDE_Obj.remove(filename,line,debugtype,timeout)
IDE_Obj.remove(all,break)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.remove(filename,filetype) deletes a file from the active
project in the IDE or deletes the project.

IDE_Obj.remove(addr,debugtype,timeout) removes a debug point
from an address in the program.

IDE_Obj.remove(filename,line,debugtype,timeout) removes a
debug point from a line in a source file.

IDE_Obj.remove(all,break) removes the breakpoints and waits for
completion.

Input
Arguments

IDE_Obj

Enter the name of the IDE link handle for your IDE. Create an IDE
link handle before you use the remove method. .

filename

Replace filename with the name of the file you are removing, or the
source file from which you are removing debug points. If the file is
not located in the active project, MATLAB returns a warning instead
of completing the action.

filetype

To remove a project, enter 'project'. To remove a source file, enter
'text'.

3-115

remove

Default: 'text'

addr

Enter the memory address of the debug point. Enter 'all' to remove
the breakpoints.

debugtype

Enter the type of debug point to remove. The IDE provide several types
of debug points. Refer to the IDE help documentation for information
on their respective behavior.

Default: 'break' (breakpoint)

line

Enter the line number of the debug point located in a file.

timeout

Enter a time limit, in seconds, for the method to complete an action.

Examples After you have a project in the IDE, you can delete files from it using
remove from the MATLAB software command line. For example, build a
project and load the resulting .out file. With the project build complete,
load your .out file by typing

IDE_Obj.load('filename.out')

Now remove one file from your project

IDE_Obj.remove('filename')

You see in the IDE that the file no longer appears.

See Also add | | open

3-116

restart

Purpose Reload most recent program file to processor signal processor

Syntax IDE_Obj.restart
IDE_Obj.restart(timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.restart issues a restart command in the IDE debugger. The
behavior of the restart process depends on the processor. Refer to the
documentation for your IDE for details about using restart with various
processors.

When IDE_Obj is an array that contains more than one processor, each
processor calls restart in sequence.

IDE_Obj.restart(timeout) adds the optional timeout input
argument. timeout defines an upper limit in seconds on the period
the restart routine waits for completion of the restart process. If the
time-out period is exceeded, restart returns control to MATLAB with a
time-out error. In general, restart causes the processor to initiate a
restart, even if the time-out period expires. The time-out error indicates
that the restart confirmation was not received before the time-out
period elapsed.

See Also halt | isrunning | run

3-117

rsimgetrtp

Purpose Global model parameter structure

Syntax rsimgetrtp('model')
rsimgetrtp('model', 'AddTunableParamInfo', 'value')

Description rsimgetrtp('model') forces a block update diagram action for model,
a model for which you are running rapid simulations, and returns the
global parameter structure for that model.

rsimgetrtp('model', 'AddTunableParamInfo', 'value') includes
tunable parameter information in the parameter structure if value is
'on'. The function omits tunable parameters if value is 'off'. To use
AddTunableParamInfo, you must enable inline parameters.

The model parameter structure contains the following fields:

Field Description

modelChecksum A four-element vector that encodes the
structure. The Simulink Coder software uses
the checksum to check whether the structure
has changed since the RSim executable was
generated. If you delete or add a block, and
then generate a new version of the structure,
the new checksum will not match the original
checksum. The RSim executable detects
this incompatibility in model parameter
structures and exits to avoid returning
incorrect simulation results. If the structure
changes, you must regenerate code for the
model.

parameters A structure that defines model global
parameters.

The parameters substructure includes the following fields:

3-118

rsimgetrtp

Field Description

dataTypeName Name of the parameter data type, for
example, double

dataTypeID An internal data type identifier

complex Value 1 if parameter values are complex and
0 if real

dtTransIdx Internal use only

values Vector of parameter values

If you set 'AddTunableParamInfo' to 'on', the function creates and
then deletes model.rtw from your current working folder and includes
a map substructure that has the following fields:

Field Description

Identifier Parameter name

ValueIndicies Vector of indices to parameter values

Dimensions Vector indicating parameter dimensions

Examples Return global parameter structure for model rtwdemo_rsimtf to
param_struct:

rtwdemo_rsimtf
param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct =

modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009
2.3064e+009]

parameters: [1x1 struct]

See Also rsimsetrtpparam

3-119

rsimgetrtp

How To • “Create a MAT-File That Includes a Model Parameter Structure”

• “Update a Block Diagram”

• “Inline parameters”

• “Block Creation”

• “Tune Parameters”

3-120

rsimsetrtpparam

Purpose Set parameters of rtP model parameter structure

Syntax rtp = rsimsetrtpparam(rtp, idx)
rtp = rsimsetrtpparam(rtp, 'paramName', paramValue)
rtP = rsimsetrtpparam(rtP, idx, 'paramName', paramValue)

Description rtp = rsimsetrtpparam(rtp, idx)

Expands the rtP structure to have idx sets of parameters

rtp = rsimsetrtpparam(rtp, 'paramName', paramValue)

Takes an rtP structure with tunable parameter information and sets
the values associated with ’paramName’ to be paramValue if possible.
There can be more than one name-value pair.

rtP = rsimsetrtpparam(rtP, idx, 'paramName', paramValue)

The rsimsetrtpparam utility allows for defining the values of an
existing rtP parameter structure.

Takes an rtP structure with tunable parameter information and sets
the values associated with ’paramName’ to be paramValue in the idx’th
parameter set. There can be more than one name-value pair. If the rtP
structure does not have idx parameter sets, the first set is copied and
appended until there are idx parameter sets. Subsequently, the idx’th
set is changed.

Input
Arguments

rtP

A parameter structure that contains the sets of parameter names and
their respective values.

idx

An index used to indicate the number of parameter sets in the rtP
structure

paramValue

The value of the rtP parameter, paramName

3-121

rsimsetrtpparam

paramName

The name of the parameter set to add to the rtP structure

Output
Arguments

rtP

An expandedrtP parameter structure that contains idx additional
parameter sets defined by the rsimsetrtpparam function call.

Definitions The rtP structure should match the format of the structure returned by
rsimsetrtp(modelName).

Examples 1 Expand the number of parameter sets in the ’rtp’ structure to 10.

rtp = rsimsetrtpparam(rtp, 10);

2 Add three parameter sets to the parameter structure, ’rtp’.

rtp = rsimsetrtpparam(rtp, idx, 'X1', iX1, 'X2' ,iX2, 'Num', iNum);

See Also rsimgetrtp

3-122

rtw_precompile_libs

Purpose Build libraries within model without building model

Syntax rtw_precompile_libs('model', build_spec)

Description rtw_precompile_libs('model', build_spec) builds libraries within
model, according to the build_spec arguments, and places the libraries
in a precompiled folder.

Input
Arguments

model

Character array. Name of the model containing the libraries that you
want to build.

build_spec

Structure of field and value pairs that define a build specification; all
fields except rtwmakecfgDirs are optional:

Field Value

rtwmakecfgDirs Cell array of strings that names the folders
containing rtwmakecfg files for libraries that
you want to precompile. Uses the Name and
Location elements of makeInfo.library, as
returned by the rtwmakecfg function, to specify
name and location of precompiled libraries. If you
use the TargetPreCompLibLocation parameter
to specify the library folder, it overrides the
makeInfo.library.Location setting.

The specified model must contain blocks that use
precompiled libraries that the rtwmakecfg files
specify. The template makefile (TMF)-to-makefile
conversion generates the library rules only if the
conversion needs the libraries.

libSuffix
(optional)

String that specifies the suffix, including the file
type extension, to append to the name of each
library (for example, .a or _vc.lib). The string

3-123

rtw_precompile_libs

Field Value
must include a period (.). Set the suffix with either
this field or the TargetLibSuffix parameter. If
you specify a suffix with both mechanisms, the
TargetLibSuffix setting overrides the setting of
this field.

intOnlyBuild
(optional)

Boolean flag. When set to true, indicates the
function optimizes the libraries so that they
compile from integer code only. Applies to
ERT-based targets only.

makeOpts
(optional)

String that specifies an option to include in the
rtwMake command line.

addLibs
(optional)

Cell array of structures that specify the libraries
to build that an rtwmakecfg function does not
specify. Define each structure with two fields that
are character arrays:

• libName— name of the library without a suffix

• libLoc— location for the precompiled library
The TMF can specify other libraries and how to
build them. Use this field if you must precompile
libraries.

Examples Build the libraries in my_model without building my_model:

% Specify the library suffix

if isunix

suffix = '.a';

else

suffix = '_vc.lib';

end

set_param(my_model, 'TargetLibSuffix', suffix);

% Set the prcompiled library folder

set_param(my_model, 'TargetPreCompLibLocation', fullfile(pwd,'lib'));

3-124

rtw_precompile_libs

% Define a build specification that specifies the location of the files to compile.

build_spec = [];

build_spec.rtwmakecfgDirs = {fullfile(pwd, 'src')};

% Build the libraries in 'my_model'

rtw_precompile_libs(my_model, build_spec);

How To • “Precompile S-Function Libraries”

• “Recompile Precompiled Libraries”

3-125

rtwbuild

Purpose Initiate build process

Syntax rtwbuild (model)
rtwbuild (model,'ForceTopModelBuild',true)
rtwbuild (model,'OkayToPushNags',true)
blockHandle=rtwbuild('subsystem')
blockHandle=rtwbuild('subsystem','Mode',

'ExportFunctionCalls')
blockHandle=rtwbuild('subsystem','Mode','ExportFunctionCalls',

'ExportFunctionInitializeFunctionName','fcnname')

Description rtwbuild (model) initiates the build process for the specified model
using the current model configuration settings. The argument is a
handle to the model or a string specifying the model name. rtwbuild
creates an executable if you clear the Generate code only check box in
the Code Generation pane of the Configuration Parameters dialog box.

rtwbuild (model,'ForceTopModelBuild',true) initiates the build
process. Specify the parameter ForceTopModelBuild with the value
true if you want to force regeneration of the top model code. If the
parameter is omitted or set to false, the build process determines
whether to regenerate the top model code based on model checksums
and options.

rtwbuild (model,'OkayToPushNags',true) initiates the build
process. Specify the parameter OkayToPushNags with the value true
if you want rtwbuild to display any build errors that occur in the
Simulation Diagnostics Viewer, as well as in the MATLAB command
window. If the parameter is omitted or set to false, build errors are
displayed only in the MATLAB command window.

blockHandle=rtwbuild('subsystem') initiates the build process
for the specified subsystem using the current model configuration
settings. The argument is a string specifying the subsystem
name or the full block path for that subsystem (for example,
'rtwdemo_export_functions/rtwdemo_subsystem'). If you are
licensed for Embedded Coder software and set Create block to SIL
in the Code Generation > Verification pane of the Configuration

3-126

rtwbuild

Parameters dialog box, rtwbuild returns a nonempty block handle,
blockHandle, to an automatically generated S-function wrapper for
the subsystem code.

blockHandle=rtwbuild('subsystem','Mode','ExportFunctionCalls')
initiates the build process to export function calls from the specified
subsystem. You must be licensed for Embedded Coder software
to export function-call subsystems.

blockHandle=rtwbuild('subsystem','Mode','ExportFunctionCalls','ExportF
initiates the build process to export function calls from the specified
subsystem and specifies fcnname as the name of the initialize function
of your exported functions. You must be licensed for Embedded Coder
software to export function-call subsystems.

If the model or subsystem is not loaded into the MATLAB environment,
rtwbuild loads it before initiating the build process.

Examples Build the rtwdemo_rtwintro example model:

rtwbuild('rtwdemo_rtwintro')

Build the rtwdemo_subsystem function-call subsystem inside the
rtwdemo_export_functions example model:

rtwdemo_export_functions

rtwbuild('rtwdemo_export_functions/rtwdemo_subsystem','Mode','ExportFunctionCalls')

Alternatives You can initiate code generation and the build process by using the
following options:

• Clear the Generate code only option on the Code Generation
pane of the Configuration Parameters dialog box and click Build.

• Press Ctrl+B.

• Select Code > C/C++ Code > Build Model.

• Invoke the slbuild command from the MATLAB command line.

3-127

rtwbuild

How To • Initiate the Build Process

• “Program Builds”

• Control Regeneration of Top Model Code

• Generate S-Function Wrappers

• Export Function-Call Subsystems

3-128

RTW.getBuildDir

Purpose Build folder information for specified model

Syntax struct=RTW.getBuildDir(modelName)

Input
Arguments

modelName
String specifying the name of a Simulink model, which can be
open or closed.

Output
Arguments

Structure containing the following build folder information about the
specified model:

Field Description

BuildDirectory String specifying the fully qualified path to the build
folder for the model.

RelativeBuildDir String specifying the build folder relative to the current
working folder (pwd).

BuildDirSuffix String specifying the suffix appended to the model name
to create the build folder.

ModelRefRelativeBuildDir String specifying the model reference target build folder
relative to current working folder (pwd).

ModelRefRelativeSimDir String specifying the model reference target simulation
folder relative to current working folder (pwd).

ModelRefDirSuffix String specifying the suffix appended to the system target
file name to create the model reference build folder.

Description The RTW.getBuildDir function returns build folder information for a
specified model, which can be open or closed. If the model is closed, the
function opens and then closes the model, leaving it in its original state.

This function can be used in automated scripts to programmatically
determine the build folder in which the generated code for a model
would be placed if the model were built in its current state.

3-129

RTW.getBuildDir

Note The RTW.getBuildDir function may take significantly longer to
execute if the specified model is large and closed.

Examples Return build folder information for the model mymmodel.

>> info=RTW.getBuildDir('mymodel');
>> info

info =

BuildDirectory: 'c:\work\mymodel_ert_rtw'
RelativeBuildDir: 'mymodel_ert_rtw'

BuildDirSuffix: '_ert_rtw'
ModelRefRelativeBuildDir: 'slprj\ert\mymodel'

ModelRefRelativeSimDir: 'slprj\sim\mymodel'
ModelRefDirSuffix: ''

3-130

rtwrebuild

Purpose Rebuild generated code

Syntax rtwrebuild()
rtwrebuild('model')
rtwrebuild('path')

Description rtwrebuild() recompiles files you modified by invoking the makefile
generated during the previous build. If you omit the input arguments,
the current working folder is the build folder of the model.

Use rtwrebuild('model') if your current working folder is one level
above the build folder of the model (pwd when you initiated the Simulink
Coder build).

Use rtwrebuild('path') to specify the path to the build folder of the
model.

If your model includes submodels, the Simulink Coder software builds
the submodels recursively before rebuilding the top model.

Input
Arguments

model String specifying the model name.

path String specifying the fully qualified path to
the build folder for the model.

Examples Rebuild the rtwdemo_f14 model:

rtwrebuild('rtwdemo_f14')

Rebuild the model in a specified path:

rtwrebuild(fullfile(matlabroot,'rtwdemo_f14'))

How To • “Rebuild a Model”

3-131

rtwreport

Purpose Generate report documenting generated code for model

Syntax rtwreport(model)
rtwreport(model, folder)

Description rtwreport(model) generates a report that shows the generated code for
a model. model is a string enclosed in quotes specifying the model name.
The function loads the model and generates code before generating
the report. The report includes:

• Snapshots of block diagrams of the model and its subsystems

• Block execution order list

• Code generation summary that includes a list of generated code files,
configuration settings, a subsystem map, and a traceability report.

• Full listings of generated code that resides in the build folder

By default, the Simulink Coder software names the generated report
codegen.html and places the file in your current folder.

rtwreport(model, folder) includes a user-specified folder. folder is
a string enclosed in quotes specifying the name of a folder. The Simulink
Coder software places the generated report in the parent folder of the
folder you specify. The Simulink Coder project folder (slprj) must be in
the parent folder. If the user-specified folder cannot be found, an error
results and the Simulink Coder software does not generate code.

Examples Generate a report for model rtwdemo_codegenrpt:

rtwreport('rtwdemo_codegenrpt');

Alternatives In the model window, select Tools > Report Generator. See “Report
Creation Workflow” for more information.

Tutorials • “Document Generated Code with Simulink Report Generator™”

How To • “Report Explorer”

3-132

rtwreport

• Code Generation Summary

• Import Generated Code

3-133

rtwtrace

Purpose Trace block to generated code

Syntax rtwtrace(blockpath)

Description rtwtrace(blockpath) opens an HTML code generation report, that
displays contents of the source code file, and highlights the line of
code corresponding to the specified block. blockpath is a string
enclosed in quotes specifying the full Simulink block path, for example,
'model_name/block_name'. Before calling rtwtrace, you must
select an ERT-based model and enable model to code navigation. For
example, on the Configuration Parameters dialog box, select the Code
Generation > Report pane, and select theModel-to-code parameter.
Generate code for your model using the Embedded Coder software.
The build folder must be under the current working folder, otherwise
rtwtrace might produce an error.

Examples After enabling model to code navigation and generating code for the
example model rtwdemo_comments, use the following command to trace
to the source code for block Out1 in the model:

rtwtrace('rtwdemo_comments/Out1')

The HTML code generation report opens and highlights the first
instance of code generated for block Out1.

3-134

rtwtrace

Alternatives To trace from a block in the model diagram, right-click a block and
select C/C++ Code > Navigate to C/C++ Code.

How To • “Trace Model Objects to Generated Code”

• “Model-to-code” on page 6-52

3-135

run

Purpose Execute program loaded on processor

Syntax IDE_Obj.run
IDE_Obj.run('runopt')
IDE_Obj.run(…,timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description IDE_Obj.run runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually, the
program counter is positioned at the top of the executable file. However,
if you stopped a running program with halt, the program counter may
be anywhere in the program. run starts the program from the program
counter current location.

If IDE_Obj references more the one processor, each processors calls
run in sequence.

IDE_Obj.run('runopt') includes the parameter runopt that defines
the action of the run method. The options for runopt are listed in the
following table.

runopt string Description

'run' Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

'runtohalt' Executes the run but then waits until the
processor halts before returning. The halt can
be the result of the PC reaching a breakpoint,
or by direct interaction with the IDE, or by the
normal program exit process.

3-136

run

runopt string Description

'tohalt' Waits until the running program has halted.
Unlike the other options, this selection does not
execute a run, it simply waits for the running
program to halt.

'main' This option resets the program and executes a
run until the start of function 'main'.

'tofunc' This option must be followed by an extra
parameter funname, the name of the function
to run to:

IDE_Obj.run('tofunc',funcname)

This executes a run from the present PC location
until the start of function funcname is reached.
If funcname is not along the program’s normal
execution path, funcname is not reached and the
method times out.

In the 'run' and 'runtohalt' cases, a halt can be caused by a
breakpoint, a direct interaction with the IDE, or by a normal program
exit.

The following table shows the availability of the runopt options by IDE.

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'run' Yes Yes Yes Yes

'runtohalt' Yes Yes Yes Yes

'tohalt' Yes Yes

'main' Yes Yes

'tofunc' Yes Yes

3-137

run

IDE_Obj.run(…,timeout) adds input argument timeout, to allow you
to set the time out to a value different from the global timeout value.
The timeout value specifies how long, in seconds, MATLAB waits for
the processor to start executing the loaded program before returning.

Most often, the 'run' and 'runtohalt' options cause the processor
to initiate execution, even when a timeout is reached. The timeout
indicates that the confirmation was not received before the timeout
period elapsed.

See Also halt | load |

3-138

Simulink.fileGenControl

Purpose Specify root folders in which to put files generated by diagram updates
and model builds

Syntax Simulink.fileGenControl(action)
cfg = Simulink.fileGenControl('getConfig')
Simulink.fileGenControl('reset', 'keepPreviousPath', true)
Simulink.fileGenControl('setConfig', 'config', cfg,

'keepPreviousPath', true, 'createDir', true)
Simulink.fileGenControl('set', 'CacheFolder',

cacheFolderPath, 'CodeGenFolder', codeGenFolderPath,
'keepPreviousPath', true, 'createDir', true)

Description Simulink.fileGenControl(action) performs a requested action
related to the file generation control parameters CacheFolder and
CodeGenFolder for the current MATLAB session. CacheFolder
specifies the root folder in which to put model build artifacts used for
simulation, and CodeGenFolder specifies the root folder in which to put
Simulink Coder code generation files. The initial session defaults for
these parameters are provided by the Simulink preferences “Simulation
cache folder” and “Code generation folder”.

cfg = Simulink.fileGenControl('getConfig') returns a handle
to an instance of the Simulink.FileGenConfig object containing the
current values of the CacheFolder and CodeGenFolder parameters.
You can then use the handle to get or set the CacheFolder and
CodeGenFolder fields.

Simulink.fileGenControl('reset', 'keepPreviousPath', true)
reinitializes the CacheFolder and CodeGenFolder parameters to
the values provided by the Simulink preferences “Simulation cache
folder” and “Code generation folder”. To keep the previous values
of CacheFolder and CodeGenFolder in the MATLAB path, specify
'keepPreviousPath' with the value true.

Simulink.fileGenControl('setConfig', 'config', cfg,
'keepPreviousPath', true, 'createDir', true) sets the file
generation control configuration for the current MATLAB session
by passing a handle to an instance of the Simulink.FileGenConfig

3-139

Simulink.fileGenControl

object containing values for the CacheFolder and/or CodeGenFolder
parameters. To keep the previous values of CacheFolder and
CodeGenFolder in the MATLAB path, specify 'keepPreviousPath'
with the value true. To create the specified file generation folders if
they do not already exist, specify 'createDir' with the value true.

Simulink.fileGenControl('set', 'CacheFolder',
cacheFolderPath, 'CodeGenFolder', codeGenFolderPath,
'keepPreviousPath', true, 'createDir', true) sets the file
generation control configuration for the current MATLAB session by
directly passing values for the CacheFolder and/or CodeGenFolder
parameters. To keep the previous values of CacheFolder and
CodeGenFolder in the MATLAB path, specify 'keepPreviousPath'
with the value true. To create the specified file generation folders if
they do not already exist, specify 'createDir' with the value true.

Input
Arguments

action

String specifying one of the following actions:

Action Description

getConfig Returns a handle to an instance of the
Simulink.FileGenConfig object containing
the current values of the CacheFolder and
CodeGenFolder parameters.

reset Reinitializes the CacheFolder and
CodeGenFolder parameters to the values
provided by the Simulink preferences
“Simulation cache folder” and “Code generation
folder”.

3-140

Simulink.fileGenControl

Action Description

set Sets the CacheFolder and/or CodeGenFolder
parameters for the current MATLAB session
by directly passing values.

setConfig Sets the CacheFolder and/or CodeGenFolder
parameters for the current MATLAB session
by passing a handle to an instance of the
Simulink.FileGenConfig object.

’config’, cfg

Specifies a handle cfg to an instance of the Simulink.FileGenConfig
object containing values to be set for the CacheFolder and/or
CodeGenFolder parameters.

’CacheFolder’, cacheFolderPath

Specifies a string value cacheFolderPath representing a folder path to
directly set for the CacheFolder parameter.

’CodeGenFolder’, codeGenFolderPath

Specifies a string value codeGenFolderPath representing a folder path
to directly set for the CodeGenFolder parameter.

3-141

Simulink.fileGenControl

Note You can specify absolute or relative paths to the build folders.
For example:

• 'C:\Work\mymodelsimcache' and '/mywork/mymodelgencode'
specify absolute paths.

• 'mymodelsimcache' is a path relative to the current working
folder (pwd). The software converts a relative path to a fully
qualified path at the time the CacheFolder or CodeGenFolder
parameter is set. For example, if pwd is '/mywork', the result is
'/mywork/mymodelsimcache'.

• '../test/mymodelgencode' is a path relative to pwd. If pwd is
'/mywork', the result is '/test/mymodelgencode'.

’keepPreviousPath’, true

For reset, set, or setConfig, specifies whether to keep the previous
values of CacheFolder and CodeGenFolder in the MATLAB path. If
'keepPreviousPath' is omitted or specified as false, the call removes
previous folder values from the MATLAB path.

’createDir’, true

For set or setConfig, specifies whether to create the specified file
generation folders if they do not already exist. If 'createDir' is
omitted or specified as false, the call throws an exception if a specified
file generation folder does not exist.

Output
Arguments

cfg

Handle to an instance of the Simulink.FileGenConfig object
containing the current values of the CacheFolder and CodeGenFolder
parameters.

Examples Obtain the current CacheFolder and CodeGenFolder values:

cfg = Simulink.fileGenControl('getConfig');

3-142

Simulink.fileGenControl

myCacheFolder = cfg.CacheFolder;

myCodeGenFolder = cfg.CodeGenFolder;

Set the CacheFolder and CodeGenFolder parameters for the
current MATLAB session by first setting fields in an instance of the
Simulink.FileGenConfig object and then passing a handle to the
object instance:

% Get the current configuration

cfg = Simulink.fileGenControl('getConfig');

% Change the parameters to C:\cachefolder and current working folder

cfg.CacheFolder = fullfile('C:','cachefolder');

cfg.CodeGenFolder = pwd;

Simulink.fileGenControl('setConfig', 'config', cfg);

Directly set the CacheFolder and CodeGenFolder parameters for
the current MATLAB session without creating an instance of the
Simulink.FileGenConfig object:

myCacheFolder = fullfile('C:','cachefolder');

myCodeGenFolder = pwd;

Simulink.fileGenControl('set', 'CacheFolder', myCacheFolder, ...

'CodeGenFolder', myCodeGenFolder);

Reinitialize the CacheFolder and CodeGenFolder parameters to the
values provided by the Simulink preferences “Simulation cache folder”
and “Code generation folder”:

Simulink.fileGenControl('reset');

Alternatives Instead of setting the CacheFolder and CodeGenFolder parameters just
for the current MATLAB session, you can set the Simulink preferences
“Simulation cache folder” and “Code generation folder”, which provide
the initial MATLAB session defaults. The preferences can be set using

3-143

Simulink.fileGenControl

the Simulink Preferences dialog box or using the MATLAB command
set_param.

See Also “Simulation cache folder” | “Code generation folder”

How To • “Control the Location for Generated Files”

3-144

Simulink.ModelReference.protect

Purpose Obscure referenced model contents to hide intellectual property

Syntax Simulink.ModelReference.protect(model)
Simulink.ModelReference.protect(model, 'Path', path_name)
Simulink.ModelReference.protect(model, 'Report', true)
Simulink.ModelReference.protect(model, 'AddGeneratedCode',

true)
Simulink.ModelReference.protect(model, 'AddGeneratedCode',

true, 'ObfuscateCode', false)
[harnessHandle] = Simulink.ModelReference.protect(model,

'Harness', true)
[~ ,neededVars] = Simulink.ModelReference.protect(model)

Description Simulink.ModelReference.protect(model) creates a protected model
from the specified model and places the protected model in the current
working folder. The protected model has the same name as the source
model. It has the extension .slxp.

Simulink.ModelReference.protect(model, 'Path', path_name)
puts the protected model in the folder specified by path_name.

Simulink.ModelReference.protect(model, 'Report', true)
includes an HTML report describing the protected model.

Simulink.ModelReference.protect(model, 'AddGeneratedCode',
true) includes the generated code for the protected model. The
generated code is obfuscated by default.

Simulink.ModelReference.protect(model, 'AddGeneratedCode',
true, 'ObfuscateCode', false) includes the generated code for the
protected model, but does not obfuscate the code.

[harnessHandle] = Simulink.ModelReference.protect(model,
'Harness', true) creates a harness model for the protected model and
returns the handle of the harnessed model in harnessHandle.

[~ ,neededVars] = Simulink.ModelReference.protect(model)
returns a cell array which includes the names of all base workspace
variables used by the protected model.

3-145

Simulink.ModelReference.protect

Input
Arguments

model

The name of the model to be protected, or the path name of a Model
block that references the model to be protected.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AddGeneratedCode

Boolean value specifying whether to include generated code with the
protected model (true), or not (false).

Default: false

Harness

Boolean value specifying whether to create a harness model (true),
or not (false).

Default: false

ObfuscateCode

Boolean value specifying whether to obfuscate the generated code
(true), or not (false). Specify this argument only if AddGenerateCode
is set to true.

Default: true

Path

For the Value, specify a string representing the path to the folder.
Omitting this Name,Value argument places the protected model in the
current folder.

3-146

Simulink.ModelReference.protect

Report

Boolean value specifying whether to include an HTML report with the
protected model (true), or not (false). The report includes environment
information, the model interface, and, if AddGenerateCode is set to
true, descriptions of the source code.

Default: false

Output
Arguments

harnessHandle

The handle of the harness model created when the input arguments
include true, or 0. otherwise. If you do not need a harness model but
want to obtain the value of the second argument, you can specify ~
instead of a name.

neededVars

A cell array that includes the names of all base workspace entities that
the protected model might need in order to be executed. The array
might also include the names of base workspace variables that are not
used by the protected model. For example, neededVars might contain
names of workspace objects that define signals which do not connect to
any root I/O port within the protected model.

Examples Protected Model for Simulation Only

To create a protected model for a referenced model, for simulation only:

sldemo_mdlref_bus;
model= 'sldemo_mdlref_bus'

Simulink.ModelReference.protect(model);

A protected model is created named sldemo_mdlref_bus.slxp. The
file is placed in the current folder.

3-147

Simulink.ModelReference.protect

Protected Model with Harness Model and Report

Create a protected model for a referenced model for simulation only.
This example includes the following options:

• A folder for the protected model: modelPath

• Referenced model in sldemo_mdlref_bus: sldemo_ref_counter_bus

• Harness model

• HTML report

sldemo_mdlref_bus;

modelPath= 'sldemo_mdlref_bus/CounterA'

Simulink.ModelReference.protect(modelPath, 'Path', 'C:\Work', 'Harness', true, 'Report', true);

A protected model is created named sldemo_mdlref_counter_bus.slxp
and the file is placed in the C:\Work folder. An untitled harness model
is also created as well as an HTML report.

Protected Model For Simulation and Code Generation

This example shows you how to create a protected model for the
referenced model, sldemo_mdlref_counter_bus and includes all
possible options for creating the protected model.

1 Create the Protected Model

sldemo_mdlref_bus;

modelPath = 'sldemo_mdlref_bus/CounterA'

pathName = 'C:\work';

[harnessHandle, neededVars] = Simulink.ModelReference.protect(modelPath, ...

'Path', pathName,...

'Harness', true, ...

'Report', true, ...

'AddGeneratedCode', true, ...

'ObfuscateCode', true)

3-148

Simulink.ModelReference.protect

A protected model file, sldemo_mdlref_counter_bus.slxp, is placed in
the C:\work folder. The protected model file includes an HTML report
and the generated code, which is obfuscated. In addition, a harness
model is generated, which is a new, untitled model.

2 Delete Unnecessary Variable Names from neededVars

The returned cell array neededVars includes the name of every
required base workspace variable.

neededVars =

'COUNTERBUS' 'INCREMENTBUS' 'LIMITBUS'

Delete any names that do not correspond to definitions listed in
“Save Base Workspace Definitions”. Leaving unnecessary names in
neededVars might:

• Risk disclosing intellectual property.

• Add unnecessary definitions to the model of the receiver.

• Increase the likelihood of a name conflict with model of the receiver.

3 Save Base Workspace Definitions

The cell array derived via the previous steps contains only the names
of base workspace variables. The protected model must have the
definitions in a separate file that you can ship with the model. To create
this file, execute:

save('sldemo_mdlref_counter_bus.mat', neededVars{:})

The {:} operator converts the cell array neededVars into a list
of comma-separated names, which become arguments to save.
Executing this command, evaluates each name and obtains the
definition from the base workspace. The definitions are stored in
sldemo_mdlref_counter_bus.mat.

4 Package Protected Model

3-149

Simulink.ModelReference.protect

Package your model for delivery to a third-party.

Alternatives “Create a Protected Model”

Related
Examples

• Protected Models for Model Reference
• “Test the Protected Model”
• “Package a Protected Model”

Concepts • “Protected Model”
• “Protect a Referenced Model”
• “Protected Model File”
• “Harness Model”
• “Protected Model Report”
• “Code Generation Support in a Protected Model”

3-150

../../simulink/examples/protected-models-for-model-reference.html

slConfigUIGetVal

Purpose Return current value for custom target configuration option

Syntax value = slConfigUIGetVal(hDlg, hSrc, 'OptionName')

Input
Arguments

hDlg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

'OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

Output
Arguments

Current value of the specified option. The data type of the return value
depends on the data type of the option.

Description The slConfigUIGetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target
is selected in the System Target File Browser in the Configuration
Parameters dialog box. You use slConfigUIGetVal to read the current
value of a specified target option.

Examples In the following example, the slConfigUIGetVal function returns
the value of the Terminate function required option on the Code
Generation > Interface pane of the Configuration Parameters dialog
box.

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'), ...

' Uncheck and disable "Terminate function required".']);

3-151

slConfigUIGetVal

disp(['Value of IncludeMdlTerminateFcn was ', ...

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUISetEnabled | slConfigUISetVal

How To • “Define and Display Custom Target Options”

• “Parameter Command-Line Information Summary” on page 6-347

• “Support Optional Features”

3-152

slConfigUISetEnabled

Purpose Enable or disable custom target configuration option

Syntax slConfigUISetEnabled(hDlg, hSrc, 'OptionName', true)
slConfigUISetEnabled(hDlg, hSrc, 'OptionName', false)

Arguments hDlg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

'OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

true
Specifies that the option should be enabled.

false
Specifies that the option should be disabled.

Description The slConfigUISetEnabled function is used in the context of a
user-written SelectCallback function, which is triggered when the
custom target is selected in the System Target File Browser in the
Configuration Parameters dialog box. You use slConfigUISetEnabled
to enable or disable a specified target option.

If you use this function to disable a parameter that is represented in the
Configuration Parameters dialog box, the parameter appears greyed
out in the dialog context.

Examples In the following example, the slConfigUISetEnabled function
disables the Terminate function required option on the Code
Generation > Interface pane of the Configuration Parameters dialog
box.

3-153

slConfigUISetEnabled

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'), ...

' Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', ...

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUIGetVal | slConfigUISetVal

How To • “Define and Display Custom Target Options”

• “Parameter Command-Line Information Summary” on page 6-347

• “Support Optional Features”

3-154

slConfigUISetVal

Purpose Set value for custom target configuration option

Syntax slConfigUISetVal(hDlg, hSrc, 'OptionName', OptionValue)

Arguments hDlg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

'OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

OptionValue
Value to be set for the specified option.

Description The slConfigUISetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target
is selected in the System Target File Browser in the Configuration
Parameters dialog box. You use slConfigUISetVal to set the value of
a specified target option.

Examples In the following example, the slConfigUISetVal function sets the
value 'off' for the Terminate function required option on the
Code Generation > Interface pane of the Configuration Parameters
dialog box.

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'), ...

' Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', ...

3-155

slConfigUISetVal

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUIGetVal | slConfigUISetEnabled

How To • “Define and Display Custom Target Options”

• “Parameter Command-Line Information Summary” on page 6-347

• “Support Optional Features”

3-156

switchTarget

Purpose Specify target for configuration set

Syntax switchTarget('config_set', 'sys_tgt_file', target_options)

Description switchTarget('config_set', 'sys_tgt_file', target_options)
specifies a system target file for the configuration set that you specify.

Input
Arguments

config_set

Handle to the active configuration set for the model.

sys_tgt_file

String that specifies a system target file.

target_options

Structure of field and value pairs to optionally specify the template
makefile, TLC options, make command, and description associated with
the target. If you do not want to use any options, you must specify an
empty structure ([]).

Field Value

TemplateMakefile String specifying file name of template
makefile.

TLCOptions String specifying TLC argument.

MakeCommand String specifying make command MATLAB
language file.

Description String specifying a description of the target.

Examples Select an ert.tlc system target file for the active configuration set:

% Get the active configuration set for 'model'
cs = getActiveConfigSet(model);
% Define a system target file
stf = 'ert.tlc';

3-157

switchTarget

% Change the system target file for the configuration set.
switchTarget(cs,stf,[]);

Specify an ert.tlc system target file and target options for the active
configuration set:

% Get the active configuration set for 'model'
cs = getActiveConfigSet(model);
% Define a system target file
stf = 'ert.tlc';
% Specify target options
tgtOpt.TemplateMakefile = 'grt_default_tmf';
tgtOpt.TLCOptions = '-aVarName=1';
tgtOpt.MakeCommand = 'make_rtw';
tgtOpt.Description = 'my target';
% Change the system target file and target options
% for the configuration set.
switchTarget(cs,stf,tgtOpt);

Alternatives To select system target files using the Configuration Parameters dialog
box:

1 In your model, open the Configuration Parameters dialog box.

2 Navigate to the Code Generation pane.

3 Specify the System target file.

4 Optionally specify, Make command and TLC options.

5 Click Apply.

How To • “Selecting a System Target File Programmatically”

• “Selecting a Target”

• “Set Target Language Compiler Options”

3-158

tlc

Purpose Invoke Target Language Compiler to convert model description file to
generated code

Syntax tlc [-options] [file]

Description tlc invokes the Target Language Compiler (TLC) from the command
prompt. The TLC converts the model description file, model.rtw (or
similar files), into target-specific code or text. Typically, you do not call
this command because the Simulink Coder build process automatically
invokes the Target Language Compiler when generating code. For more
information, see “Introduction to the Target Language Compiler”.

Note This command is used only when invoking the TLC separately
from the Simulink Coder build process. You cannot use this command
to initiate code generation for a model.

tlc [-options] [file]

You can change the default behavior by specifying one or more
compilation options as described in “Options” on page 3-159

Options You can specify one or more compilation options with each tlc
command. Use spaces to separate options and arguments. TLC resolves
options from left to right. If you use conflicting options, the rightmost
option prevails. The tlc options are:

• “-r Specify Simulink® Coder™ filename” on page 3-160

• “-v Specify verbose level” on page 3-160

• “-l Specify path to local include files” on page 3-160

• “-m Specify maximum number of errors” on page 3-160

• “-O Specify the output file path” on page 3-160

• “-d[a|c|n|o] Invoke debug mode” on page 3-160

3-159

tlc

• “-a Specify parameters” on page 3-161

• “-p Print progress” on page 3-161

• “-lint Performance checks and runtime statistics” on page 3-161

• “-xO Parse only” on page 3-161

-r Specify Simulink Coder filename

-r file_name

Specify the filename that you want to translate.

-v Specify verbose level

-v number

Specify a number indicating the verbose level. If you omit this option,
the default value is one.

-l Specify path to local include files

-l path

Specify a folder path to local include files. The TLC searches this path
in the order specified.

-m Specify maximum number of errors

-m number

Specify the maximum number of errors reported by the TLC prior to
terminating the translation of the .tlc file.

If you omit this option, the default value is five.

-O Specify the output file path

-O path

Specify the folder path to place output files.

If you omit this option, TLC places output files in the current folder.

-d[a|c|n|o] Invoke debug mode

-da execute any %assert directives

3-160

tlc

-dc invoke the TLC command line debugger

-dn produce log files, which indicate those lines hit and those lines
missed during compilation.

-do disable debugging behavior

-a Specify parameters

-a identifier = expression

Specify parameters to change the behavior of your TLC program. For
example, this option is used by the Simulink Coder software to set
inlining of parameters or file size limits.

-p Print progress

-p number

Print a ’.’ indicating progress for every number of TLC primitive
operations executed.

-lint Performance checks and runtime statistics

-lint

Perform simple performance checks and collect runtime statistics.

-xO Parse only

-xO

Parse only a TLC file; do not execute it.

3-161

updateFilePathsAndExtensions

Purpose Update files in model build information with missing paths and file
extensions

Syntax updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

extensions (optional)
A cell array of character arrays that specifies the extensions
(file types) of files for which to search and include in the update
processing. By default, the function searches for files with a
.c extension. The function checks files and updates paths and
extensions based on the order in which you list the extensions in
the cell array. For example, if you specify {'.c' '.cpp'} and a
folder contains myfile.c and myfile.cpp, an instance of myfile
would be updated to myfile.c.

Description Using paths that already exist in the model build information, the
updateFilePathsAndExtensions function checks whether any file
references in the build information need to be updated with a path or
file extension. This function can be particularly useful for

• Maintaining build information for a toolchain that requires the use of
file extensions

• Updating multiple customized instances of build information for a
given model

Note If you need to use updateFilePathsAndExtensions, you should
call it once, after all files have been added to the build information, to
minimize the potential performance impact of the required disk I/O.

3-162

updateFilePathsAndExtensions

Examples Create the folder path etcproj/etc in your working folder, add files
etc.c, test1.c, and test2.c to the folder etc. This example assumes
the working folder is w:\work\BuildInfo. From the working folder,
update build information myModelBuildInfo with any missing paths or
file extensions.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(pwd,...
'etcproj', '/etc'), 'test');

addSourceFiles(myModelBuildInfo, {'etc' 'test1'...
'test2'}, '', 'test');

before=getSourceFiles(myModelBuildInfo, true, true);
before

before =

'\etc' '\test1' '\test2'

updateFilePathsAndExtensions(myModelBuildInfo);
after=getSourceFiles(myModelBuildInfo, true, true);
after{:}

ans =

w:\work\BuildInfo\etcproj\etc\etc.c

ans =

w:\work\BuildInfo\etcproj\etc\test1.c

ans =

w:\work\BuildInfo\etcproj\etc\test2.c

3-163

updateFilePathsAndExtensions

See Also addIncludeFiles | addIncludePaths | addSourceFiles |
addSourcePaths | updateFileSeparator

How To • “Customize Post-Code-Generation Build Processing”

3-164

updateFileSeparator

Purpose Change file separator used in model build information

Syntax updateFileSeparator(buildinfo, separator)

Arguments buildinfo
Build information returned by RTW.BuildInfo.

separator
A character array that specifies the file separator \ (Windows®) or
/ (UNIX®) to be applied to file path specifications.

Description The updateFileSeparator function changes all instances of the current
file separator (/ or \) in the model build information to the specified
file separator.

The default value for the file separator matches the value returned by
the MATLAB command filesep. For makefile based builds, you can
override the default by defining a separator with the MAKEFILE_FILESEP
macro in the template makefile (see “Cross-Compile Code Generated on
Microsoft® Windows”. If the GenerateMakefile parameter is set, the
Simulink Coder software overrides the default separator and updates
the model build information after evaluating the PostCodeGenCommand
configuration parameter.

Examples Update object myModelBuildInfo to apply the Windows file separator.

myModelBuildInfo = RTW.BuildInfo;
updateFileSeparator(myModelBuildInfo, '\');

See Also addIncludeFiles | addIncludePaths | addSourceFiles |
addSourcePaths | updateFilePathsAndExtensions

How To • “Customize Post-Code-Generation Build Processing”

• “Cross-Compile Code Generated on Microsoft Windows”

3-165

write

Purpose Write data to processor memory block

Syntax mem=IDE_Obj.write(address,data)
mem=write(…,datatype)
mem=IDE_Obj.write(…,memorytype)
mem=IDE_Obj.write(…,timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description mem=IDE_Obj.write(address,data) writes data, a collection of values,
to the memory space of the DSP processor referenced by IDE_Obj.

The data argument is a scalar, vector, or array of values to write to
the memory of the processor. The block to write begins from the DSP
memory location given by the input parameter address.

The method writes the data starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering of
the data type is automatically applied.

Note You cannot write data to processor memory while the processor
is running.

The address argument is a decimal or hexadecimal representation of a
memory address in the processor. The full memory address consist of
two parts: the start address and the memory type. The memory type
value can be explicitly defined using a numeric vector representation
of the address.

Alternatively, the IDE_Obj object has a default memory type value
which is applied if the memory type value is not explicitly incorporated
into the passed address parameter. In DSP processors with only a
single memory type, by setting the IDE_Obj object memory type value

3-166

write

to zero it is possible to specify the addresses using the abbreviated
(implied memory type) format.

You provide the address argument either as a numerical value that is
a decimal representation of the DSP memory address, or as a string
that write converts to the decimal representation of the start address.
(Refer to function hex2dec in the MATLAB Function Reference that
read uses to convert the hexadecimal string to a decimal value).

The following examples show how write uses the address argument.

address
Parameter
Value

Description

131082 Decimal address specification. The memory start
address is 131082 and memory type is 0. This action is
the same as specifying [131082 0].

[131082 1] Decimal address specification. The memory start
address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as a string
entry. The memory start address is 131082 (converted
to the decimal equivalent) and memory type is 0.

It is possible to specify address as cell array, in which case you can use
a combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

myaddress1 myaddress1{1} = 131072; myadddress1{2} =
'Program(PM) Memory';

myaddress2 myaddress2{1} = '20000'; myadddress2{2} =
'Program(PM) Memory';

myaddress3 myaddress3{1} = 131072; myaddress3{2} = 0;

mem=write(…,datatype) where the datatype argument defines the
interpretation of the raw values written to DSP memory. The datatype

3-167

write

argument specifies the data format of the raw memory image. The
data is written starting from address without regard to data type
alignment boundaries in the DSP. The byte ordering of the data type
is automatically applied. The following MATLAB data types are
supported.

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

write does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=IDE_Obj.write(…,memorytype) adds an optional memorytype
argument. Object IDE_Obj has a default memory type value 0 that
write applies if the memory type value is not explicitly incorporated
into the passed address parameter. In processors with only a single
memory type, it is possible to specify the addresses using the implied
memory type format by setting the value of the IDE_Obj memorytype
property to zero.

3-168

write

mem=IDE_Obj.write(…,timeout) adds the optional timeout argument,
which the number of seconds MATLAB waits for the write process to
complete. If the timeout period expires before the write process returns
a completion message, MATLAB throws an error and returns. Usually
the process works in spite of the error message.

Using write with VisualDSP++ IDE

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for
memorytype

Numerical Entry
for memorytype

Processor Support

'program(pm)
memory'

0 Blackfin and SHARC

'data(dm)
memory'

1 SHARC

'data(dm) short
word memory'

2 SHARC

'external
data(dm) byte
memory'

3 SHARC

'boot(prom)
memory'

4 SHARC

Examples Example with VisualDSP++ IDE

These three syntax examples show how to use write in some common
ways. In the first example, write an array of 16-bit integers to location
[131072 1].

IDE_Obj.write([131072 1],int16([1:100]));

Now write a single-precision IEEE floating point value (32-bits) at
address 2000A(Hex).

3-169

write

IDE_Obj.write('2000A',single(23.5));

For the third example, write a 2-D array of integers in row-major format
(standard C programming format) at address 131072 (decimal).

mlarr = int32([1:10;101:110]);
IDE_Obj.write(131072,mlarr');

See Also hex2dec | read

3-170

xmakefilesetup

Purpose Configure your coder product to generate makefiles

Syntax xmakefilesetup

IDEs This function supports the following IDEs:

• Eclipse IDE

Description You can configure your coder product to generate and build your
software using makefiles. This process can use the software build
toolchains, such as compilers and linkers, associated with the preceding
list of IDEs. However, the makefile build process does not use the
graphical user interface of the IDE directly.

Enter xmakefilesetup at the MATLAB command line to configure
how to generate makefiles.

Use this function:

• Before you build your software using makefiles for the first time.

• If you change the software build toolchain or processor family.

For more instructions and examples, see “Makefiles for Software Build
Tool Chains”.

The xmakefile function displays the following dialog box, which
prompts you for information about your make utility and software
build toolchain.

3-171

xmakefilesetup

See Also “Build format” on page 6-287 | “Build action” on page 6-289

3-172

4

Block Reference

Asynchronous (p. 4-2) Specify asynchronous function-call
inputs or create interrupt support
blocks

Custom Code (p. 4-3) Insert custom code into generated
model files and subsystem functions

Desktop Targets (desktoptargetslib)
(p. 4-4)

Generate code for execution on host
Windows or Linux systems

S-Function Target (p. 4-6) Generate code for S-function

4 Block Reference

Asynchronous

Asynchronous Task Specification Allow for parameter specifications
for asynchronous tasks associated
with root-level Inport blocks that
output a function-call trigger

Interrupt Templates (p. 4-2) Create blocks that provide interrupt
support for real-time operating
system (RTOS)

Interrupt Templates

Async Interrupt Generate Versa Module Eurocard
(VME) interrupt service routines
(ISRs) that are to execute
downstream subsystems or Task
Sync blocks

Task Sync Spawn VxWorks® task to run code of
downstream function-call subsystem
or Stateflow chart

4-2

Custom Code

Custom Code
Model Header Specify custom header code

Model Source Specify custom source code

System Derivatives Specify custom system derivative
code

System Disable Specify custom system disable code

System Enable Specify custom system enable code

System Initialize Specify custom system initialization
code

System Outputs Specify custom system outputs code

System Start Specify custom system startup code

System Terminate Specify custom system termination
code

System Update Specify custom system update code

4-3

4 Block Reference

Desktop Targets (desktoptargetslib)

In this section...

“Host Communication” on page 4-4

“Target Preferences” on page 4-4

“Linux” on page 4-4

“Windows” on page 4-5

Host Communication

Byte Pack Convert input signals to uint8
vector

Byte Reversal Reverse order of bytes in input word

Byte Unpack Unpack UDP uint8 input vector into
Simulink data type values

UDP Receive Receive UDP packet

UDP Send Send UDP message

Target Preferences

Target Preferences Configure model for specific IDE,
tool chain, board, and processor

Linux

Linux Audio Capture Capture ALSA audio from sound
card and output data

Linux Audio Playback Send audio data stream to ALSA
audio device output

Linux Task Spawn task function as separate
Linux thread

4-4

Desktop Targets (desktoptargetslib)

UDP Receive Receive UDP packet

UDP Send Send UDP message

Windows

UDP Receive Receive UDP packet

UDP Send Send UDP message

Windows Task Spawn task function as separate
Windows thread

4-5

4 Block Reference

S-Function Target

Generated S-Function Represent model or subsystem as
generated S-function code

4-6

5

Blocks — Alphabetical List

Async Interrupt

Purpose Generate Versa Module Eurocard (VME) interrupt service routines
(ISRs) that are to execute downstream subsystems or Task Sync blocks

Library Asynchronous / Interrupt Templates

Description
For each specified VxWorks VME interrupt level, the Async Interrupt
block generates an interrupt service routine (ISR) that calls one of the
following:

• A function call subsystem

• A Task Sync block

• A Stateflow chart configured for a function call input event

You can use the block for simulation and code generation.

Parameters VME interrupt number(s)
An array of VME interrupt numbers for the interrupts to be
installed. The valid range is 1..7.

The width of the Async Interrupt block output signal corresponds
to the number of VME interrupt numbers specified.

Note A model can contain more than one Async Interrupt block.
However, if you use more than one Async Interrupt block, do not
duplicate the VME interrupt numbers specified in each block.

VME interrupt vector offset(s)
An array of unique interrupt vector offset numbers corresponding
to the VME interrupt numbers entered in the VME interrupt
number(s) field. The Stateflow software passes the offsets to the
VxWorks call intConnect(INUM_TO_IVEC(offset),...).

5-2

Async Interrupt

Simulink task priority(s)
The Simulink priority of downstream blocks. Each output
of the Async Interrupt block drives a downstream block (for
example, a function-call subsystem). Specify an array of priorities
corresponding to the VME interrupt numbers you specify for
VME interrupt number(s).

The Simulink task priority values are required to generate a
rate transition code (see “Rate Transitions and Asynchronous
Blocks” in the Simulink Coder documentation). Simulink task
priority values are also required to maintain absolute time
integrity when the asynchronous task needs to obtain real time
from its base rate or its caller. The assigned priorities typically
are higher than the priorities assigned to periodic tasks.

Note The Simulink software does not simulate asynchronous
task behavior. The task priority of an asynchronous task is
for code generation purposes only and is not honored during
simulation.

Preemption flag(s); preemptable-1; non-preemptable-0
The value 1 or 0. Set this option to 1 if an output signal of the
Async Interrupt block drives a Task Sync block.

Higher priority interrupts can preempt lower priority interrupts
in VxWorks. To lock out interrupts during the execution of an
ISR, set the preemption flag to 0. This causes generation of
intLock() and intUnlock() calls at the beginning and end of
the ISR code. Use interrupt locking carefully, as it increases
the system’s interrupt response time for all interrupts at the
intLockLevelSet() level and below. Specify an array of flags
corresponding to the VME interrupt numbers entered in the VME
interrupt number(s) field.

5-3

Async Interrupt

Note The number of elements in the arrays specifying VME
interrupt vector offset(s) and Simulink task priority must
match the number of elements in the VME interrupt number(s)
array.

Manage own timer
If checked, the ISR generated by the Async Interrupt block
manages its own timer by reading absolute time from the
hardware timer. Specify the size of the hardware timer with the
Timer size option.

Timer resolution (seconds)
The resolution of the ISRs timer. ISRs generated by the Async
Interrupt block maintain their own absolute time counters. By
default, these timers obtain their values from the VxWorks
kernel by using the tickGet call. The Timer resolution
field determines the resolution of these counters. The default
resolution is 1/60 second. The tickGet resolution for your board
support package (BSP) might be different. You should determine
the tickGet resolution for your BSP and enter it in the Timer
resolution field.

If you are targeting VxWorks, you can obtain better timer
resolution by replacing the tickGet call and accessing a hardware
timer by using your BSP instead. If you are targeting an RTOS
other than VxWorks, you should replace the tickGet call
with an equivalent call to the target RTOS, or generate code
to read the timer register on the target hardware. See “Use
Timers in Asynchronous Tasks” and “Async Interrupt Block
Implementation” in the Simulink Coder documentation for more
information.

Timer size
The number of bits to be used to store the clock tick for a hardware
timer. The ISR generated by the Async Interrupt block uses the
timer size when you select Manage own timer. The size can be

5-4

Async Interrupt

32bits (the default), 16bits, 8bits, or auto. If you select auto,
the Simulink Coder software determines the timer size based
on the settings of Application lifespan (days) and Timer
resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for the code generator to handle as a 32-bit integer of
the specified resolution, the code generator uses a second 32-bit
integer to address overflows.

For more information, see “Control Memory Allocation for Time
Counters”. See also “Use Timers in Asynchronous Tasks”.

Enable simulation input
If checked, the Simulink software adds an input port to the Async
Interrupt block. This port is for use in simulation only. Connect
one or more simulated interrupt sources to the simulation input.

Note Before generating code, consider removing blocks that drive
the simulation input to prevent the blocks from contributing to
the generated code. Alternatively, you can use the Environment
Controller block, as explained in “Dual-Model Approach: Code
Generation”. However, if you use the Environment Controller
block, be aware that the sample times of driving blocks contribute
to the sample times supported in the generated code.

5-5

Async Interrupt

Inputs and
Outputs

Input
A simulated interrupt source.

Output
Control signal for a

• Function-call subsystem

• Task Sync block

• Stateflow chart configured for a function call input event

Assumptions
and
Limitations

• The block supports VME interrupts 1 through 7.

• The block requires a VxWorks Board Support Package (BSP) that
supports the following VxWorks system calls:

sysIntEnable
sysIntDisable
intConnect
intLock
intUnlock
tickGet

Performance
Considerations

Execution of large subsystems at interrupt level can have a significant
impact on interrupt response time for interrupts of equal and lower
priority in the system. As a general rule, it is best to keep ISRs as short
as possible. Connect only function-call subsystems that contain a small
number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function-call subsystem to a VxWorks
task. Place the Task Sync block between the Async Interrupt block
and the function-call subsystem. The Async Interrupt block then uses
the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately
from interrupt level. VxWorks then schedules and runs the task. See
the description of the Task Sync block for more information.

5-6

Async Interrupt

See Also Task Sync
“Handle Asynchronous Events” in the Simulink Coder documentation

5-7

Asynchronous Task Specification

Purpose Allow for parameter specifications for asynchronous tasks associated
with root-level Inport blocks that output a function-call trigger

Library Asynchronous

Description
The Asynchronous Task Specification block, in combination with a
root-level Inport block, allows for an asynchronous function-call input
to a model reference.

To implement this feature, place this block at the output port of each
root-level Inport block that outputs a function-call trigger. On the
Signal Attributes pane of the Inport block, select Output function
call to specify that the Inport block accepts function-call signals.
Then use the Asynchronous Task Specification blocks to specify the
asynchronous task parameters associated with the respective Inport
blocks.

Data Type
Support

This specification does not apply to the Asynchronous Task Specification
block; the block accepts only function-call signals.

5-8

Asynchronous Task Specification

Parameters
and
Dialog
Box

The Function Block Parameters dialog box of the Asynchronous
Task Specification block appears as follows:

5-9

Asynchronous Task Specification

Task priority

Specifies the priority of the asynchronous task calling the destination
function-call subsystem. The priority must be a value that generates
relevant rate transition behaviors.

Settings
Default: 10

• You can enter an integer or [].

• If you specify an integer for an Asynchronous Task Specification
block that resides in a model reference, then the initiator in the top
model must have the same integer value for its priority.

• If you specify [] for an Asynchronous Task Specification block that
resides in a model reference, then the initiator in the top model can
have any priority. For this case, the rate transition algorithm is
conservative (not optimized), assuming that the priority is unknown
but static.

Command-Line Information
This block has only one parameter.

Parameter: TaskPriority

Value: integer

Configuration Parameters Settings

To create an asynchronous model reference containing a Function-Call
and an Asynchronous Task Specification block, you must follow the
procedure outlined in “Convert an Asynchronous Subsystem into a
Model Reference”. One of the steps requires that you make several
changes to configuration parameters.

Additional configuration parameters that require attention are the
solver Type and the Fixed step size (fundamental sample time) on
the Solver pane. Both the top model and the model reference must use
a fixed-step solver. Moreover, the submodel must have a fundamental
sample time that is an integer multiple of the fundamental sample
time of the top model.

5-10

Asynchronous Task Specification

Examples Asynchronous Function-Call Input to Model

This root-level model uses the Inport block with the Asynchronous
Task Specification block to allow a function-call input signal to a model
reference. The priority is set to 10.

The Asynchronous Task Specification block must immediately follow the
Inport block. Also, no branch can emanate from the signal connecting
the Inport block to the Asynchronous Task Specification block.

5-11

Asynchronous Task Specification

Setting Priorities

For this model, if the Asynchronous Task Specification block is set to
the default value of 10, then the Async Interrupt block must also have
a priority of 10.

Whereas, if the priority of the Asynchronous Task Specification block is
set to the empty matrix, [], then the Async Interrupt can have any value.

5-12

Asynchronous Task Specification

Characteristics Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion N/A

Dimensionalized No

Multidimensionalized No

Zero-Crossing Detection No

See Also Function-Call Subsystem block

“Handle Asynchronous Events”

“Model Reference”

Inport block

5-13

Byte Pack

Purpose Convert input signals to uint8 vector

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Description
Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using
the UDP protocol.

5-14

Byte Pack

Dialog
Box

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block has at least one input port and only
one output port.

Byte alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of the
alignment value. The alignment algorithm s that each element
in the output vector begins on a byte boundary specified by the

5-15

Byte Pack

alignment value. Byte alignment sets the boundaries relative to
the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
without holes between data types in the various combinations of
data types and signals.

Sometimes, you can have multiple data types of varying lengths. In
such cases, specifying a 2-byte alignment can produce 1–byte gaps
between uint8 or int8 values and another data type. In the pack
implementation, the block copies data to the output data buffer 1 byte
at a time. You can specify data alignment options with data types.

Example Use a cell array to enter input data types in the Input port data types
parameter. The order of the data types you enter must match the order
of the data types at the block input.

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and

5-16

Byte Pack

single. With this information, the block automatically provides the
number of block inputs.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:

{'uint32','uint32','uint16','double','uint8','double','single'}

When the signals are scalar values (not matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

See Also Byte Reversal, Byte Unpack

5-17

Byte Reversal

Purpose Reverse order of bytes in input word

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Description
Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel® processors that
are little endian and others that are big endian. Texas Instruments™
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

5-18

Byte Reversal

Dialog
Box

Number of inputs
Specify the number of block inputs. The number of block inputs
adjusts automatically to match value so the number of outputs
equals the number of inputs.

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves
through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

5-19

Byte Reversal

See Also Byte Pack, Byte Unpack

5-20

Byte Unpack

Purpose Unpack UDP uint8 input vector into Simulink data type values

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Description
Byte Unpack is the inverse of the Byte Pack block. It takes a UDP
message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

5-21

Byte Unpack

Dialog
Box

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies
the dimension that the MATLAB size function returns for the
corresponding signal. Usually you use the same dimensions
as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

Output port data types (cell array)
Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

5-22

Byte Unpack

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

Example This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16','double','uint8','double','single'}.

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
show how to enter nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

5-23

Generated S-Function

Purpose Represent model or subsystem as generated S-function code

Library S-Function Target

Description An instance of the Generated S-Function block represents code the
Simulink Coder software generates from its S-function target for a
model or subsystem. For example, you extract a subsystem from a
model and build a Generated S-Function block from it, using the
S-function target. This mechanism can be useful for

• Converting models and subsystems to application components

• Reusing models and subsystems

• Optimizing simulation — often, an S-function simulates more
efficiently than the original model

For details on how to create a Generated S-Function block from a
subsystem, see “Create S-Function Blocks from a Subsystem” in the
Simulink Coder documentation.

Requirements • The S-Function block must perform identically to the model or
subsystem from which it was generated.

• Before creating the block, you must explicitly specify all Inport block
signal attributes, such as signal widths or sample times. The sole
exception to this rule concerns sample times, as described in “Sample
Time Propagation in Generated S-Functions”.

• You must set the solver parameters of the Generated S-Function
block to be the same as those of the original model or subsystem.
The generated S-function code will operate identically to the
original subsystem (see Choice of Solver Type in the Simulink Coder
documentation for an exception to this rule).

5-24

Generated S-Function

Parameters Generated S-function name (model_sf)
The name of the generated S-function. The Simulink Coder
software derives the name by appending _sf to the name of the
model or subsystem from which the block is generated.

Show module list
If checked, displays modules generated for the S-function.

See Also “Create S-Function Blocks from a Subsystem” in the Simulink Coder
documentation

5-25

Linux Audio Capture

Purpose Capture ALSA audio from sound card and output data

Library Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

Description
This block uses the ALSA driver framework to capture an audio stream
from a sound card. It outputs the left and right channels of the signal as
an [Nx2] frame of int16 values. N is the number of samples per frame.

5-26

Linux Audio Capture

Dialog

Device
Use the default ALSA device, or enter the name of a specific audio
output device.

Entering 'default' selects the ALSA device specified by an
ALSA configuration file on your target Linux® system.

One of the following ALSA configuration files defines the default
device:

• /etc/asound.conf, which defines system-wide options for all
users

5-27

Linux Audio Capture

• ~/.asoundrc, which overrides /etc/asound.conf for the
current user

The entry that specifies the default device looks similar to this
example:

pcm.!default {
type hw
card 0
device 2

}

To enter the name of an alternate audio input device, review
the /proc/asound/cards file on your target Linux system. For
example, if /proc/asound/cards contained the following entries,
you could set the value of Device to 'AudioPCI' :

$ cat /proc/asound/cards

0 [Dummy]: Dummy - Dummy
Dummy 1

1 [VirMIDI]: VirMIDI - VirMIDI
Virtual MIDI Card 1

2 [AudioPCI]: ENS1371 - Ensoniq AudioPCI
Ensoniq AudioPCI ENS1371 at 0xe400, irq 11

The default value for Device is 'default'.

Sample rate (Hz)
Enter a value that matches the sample rate of the ALSA audio
output.

By default, the sample rate of the ALSA output equals the output
of the audio capture device. In this case, enter the sample rate of
the audio capture device.

5-28

Linux Audio Capture

The /etc/asound.conf and ~/.asoundrc files can configure
ALSA to downsample the signal from the audio capture device. In
this case, enter the downsample rate specified by the configuration
files. For example, if one of the configuration files contained the
following entry, you would set the value of Sample rate (Hz)
to 16000 :

pcm_slave.sl3 {
pcm ens1371
format S16_LE
channels 1
rate 16000

}
pcm.complex_convert {

type plug
slave sl3

}

The default value for Sample rate (Hz) is 44100 Hz (44.1 kHz).
The maximum rate equals the sampling rate of the audio capture
device.

Queue duration (seconds)
Set the duration of the queue in seconds. This queue provides a
software-based frame buffer between the ALSA output and the
Linux Audio Capture block. The queue prevents dropped data
caused by temporary mismatches in the rate of data arriving and
leaving the queue. Higher values can handle more significant
mismatches, but such values also increase signal latency and
memory usage.

The default value for Queue duration (seconds) is 0.5 seconds.

Frame size (samples)
Set the number of samples per frame in the output this block
sends to your model. The default value for this parameter is
4096 samples.

5-29

Linux Audio Capture

References http://www.alsa-project.org

See Also http://www.alsa-project.org

Linux Audio Playback

Linux Task

5-30

http://www.alsa-project.org
http://www.alsa-project.org

Linux Audio Playback

Purpose Send audio data stream to ALSA audio device output

Library Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux (linuxlib)

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

Description
This block takes a stream of audio data and sends it to the output jack
of an ALSA audio device. The block input, In, takes the left and right
channels of data as an [Nx2] frame of int16 values. N is the number of
samples per frame.

5-31

Linux Audio Playback

Dialog

Device
Use the default ALSA device, or enter the name of a specific audio
device.

Entering 'default' selects the ALSA device specified by an
ALSA configuration file on your target Linux system.

One of the following ALSA configuration files defines the default
device:

• /etc/asound.conf, which defines system-wide options for all
users

• ~/.asoundrc, which overrides /etc/asound.conf for the
current user

5-32

Linux Audio Playback

The entry that specifies the default device looks like this
hypothetical example:

pcm.!default {
type hw
card 0
device 2

}

To enter the name of an alternate audio device, consult the
/proc/asound/cards file on your target Linux system. For
example, if /proc/asound/cards contained the following
hypothetical entries, you could set the value of Device to
'AudioPCI' :

$ cat /proc/asound/cards

0 [Dummy]: Dummy - Dummy
Dummy 1

1 [VirMIDI]: VirMIDI - VirMIDI
Virtual MIDI Card 1

2 [AudioPCI]: ENS1371 - Ensoniq AudioPCI
Ensoniq AudioPCI ENS1371 at 0xe400, irq 11

The default value for Device is 'default'.

Sample rate (Hz)
Enter a value that matches the sample rate of the ALSA audio
output.

By default, the sample rate of the ALSA output is the same as the
output of the audio capture device. In this case, enter the sample
rate of the audio capture device.

The /etc/asound.conf and ~/.asoundrc files can configure
ALSA to downsample the signal from the audio capture device. In

5-33

Linux Audio Playback

this case, enter the downsample rate specified by the configuration
files. For example, if one of the configuration files contained the
following hypothetical entry, you would set the value of Sample
rate (Hz) to 16000 :

pcm_slave.sl3 {
pcm ens1371
format S16_LE
channels 1
rate 16000

}
pcm.complex_convert {

type plug
slave sl3

}

The default value for Sample rate (Hz) is 44100 Hz (44.1 kHz).
The maximum rate is the sampling rate of the audio capture
device.

Queue duration (seconds)
Set the duration of the queue in seconds. This queue provides a
software-based frame buffer between the ALSA audio device and
this block. The queue prevents dropped data caused by temporary
mismatches in the rate of data arriving and leaving the queue.
Higher values can handle more significant mismatches, but
increase signal latency and memory usage.

The default value for Queue duration (seconds) is 0.5 seconds.

See Also http://www.alsa-project.org

Linux Audio Capture

Linux Task

5-34

http://www.alsa-project.org

Linux Task

Purpose Spawn task function as separate Linux thread

Library Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

Description
Use this block to create a task function that spawns as a separate Linux
thread. The task function runs the code of the downstream function-call
subsystem. For example:

In order to use this block, set the System target file parameter to
idelink_ert.tlc or idelink_ert.tlc. The System target file
parameter is located on the Code Generation pane of the Model
Configuration Parameters dialog, which you can view by selecting your
model and pressing Ctrl+E.

5-35

Linux Task

Dialog

Task name
Assign a name to this task. You can enter up to 32 letters and
numbers. Do not use standard C reserved characters, such as the
/ and : characters.

Thread scheduling policy
Select the scheduling policy that applies to this thread. You can
choose from the following options:

• SCHED_FIFO enables a First In, First Out scheduling algorithm
that executes real-time processes without time slicing.
With FIFO scheduling, a higher-priority process preempts a
lower-priority process. The lower-priority process remains at
the top of the list for its priority and resumes execution when
the scheduler blocks all higher-priority processes.

For example, in the following image, task2 preempts task1.
Then task3 preempts task2. When task3 completes, task2
resumes. When task2 completes, task1 resumes.

5-36

Linux Task

Selecting SCHED_FIFO, displays the Thread priority
parameter, which you can set to a value from 1 to 99.

• SCHED_OTHER enables the default Linux time-sharing
scheduling algorithm. You can use this scheduling for
all processes except those requiring special static priority
real-time mechanisms. With this algorithm, the scheduler
chooses processes based on their dynamic priority within the
static priority 0 list. Each time the process is ready to run
and the scheduler denies it, the operating system increases
that process’s dynamic priority. Such prioritization helps the
scheduler serve the SCHED_OTHER processes.

Selecting SCHED_OTHER, hides the Thread priority parameter,
and sets the thread priority to 0.

Thread priority (1 to 99)
When you set Thread scheduling policy to SCHED_FIFO, you
can set the priority of the thread from 1 to 99 (low-to-high).

Higher-priority tasks can preempt lower-priority tasks.

See Also Linux Audio Capture

5-37

Linux Task

Linux Audio Playback

5-38

Model Header

Purpose Specify custom header code

Library Custom Code

Description The Model Header block adds user-specified custom code to the model.h
file that the code generator creates for the model that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters Top of Model Header
Code to be added near the top of the generated model header file,
in a user code (top of header file) section.

Bottom of Model Header
Code to be added at the bottom of the generated model header file,
in a user code (bottom of header file) section.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Source, System Derivatives, System Disable, System Enable,
System Initialize, System Outputs, System Start, System Terminate,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-39

Model Source

Purpose Specify custom source code

Library Custom Code

Description The Model Source block adds user-specified custom code to the model.c
or model.cpp file that the code generator creates for the model that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters Top of Model Source
Code to be added near the top of the generated model source file,
in a user code (top of source file) section.

Bottom of Model Source
Code to be added at the bottom of the generated model source file,
in a user code (bottom of source file) section.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, System Derivatives, System Disable, System Enable,
System Initialize, System Outputs, System Start, System Terminate,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-40

Protected RT

Purpose Handle transfer of data between blocks operating at different rates
and maintain data integrity

Library VxWorks (vxlib1)

Description The Protected RT block is a Rate Transition block that is preconfigured
to maintain data integrity during data transfers. For more information,
see Rate Transition in the Simulink Reference.

5-41

System Derivatives

Purpose Specify custom system derivative code

Library Custom Code

Description The System Derivatives block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDerivatives
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Derivatives Function Declaration Code
Code to be added to the declaration section of the generated
SystemDerivatives function.

System Derivatives Function Execution Code
Code to be added to the execution section of the generated
SystemDerivatives function.

System Derivatives Function Exit Code
Code to be added to the exit section of the generated
SystemDerivatives function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Disable, System Enable, System
Initialize, System Outputs, System Start, System Terminate, System
Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-42

System Disable

Purpose Specify custom system disable code

Library Custom Code

Description The System Disable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDisable
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Disable Function Declaration Code
Code to be added to the declaration section of the generated
SystemDisable function.

System Disable Function Execution Code
Code to be added to the execution section of the generated
SystemDisable function.

System Disable Function Exit Code
Code to be added to the exit section of the generated
SystemDisable function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Derivatives, System Enable,
System Initialize, System Outputs, System Start, System Terminate,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-43

System Enable

Purpose Specify custom system enable code

Library Custom Code

Description The System Enable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemEnable
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Enable Function Declaration Code
Code to be added to the declaration section of the generated
SystemEnable function.

System Enable Function Execution Code
Code to be added to the execution section of the generated
SystemEnable function.

System Enable Function Exit Code
Code to be added to the exit section of the generated SystemEnable
function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Derivatives, System Disable,
System Initialize, System Outputs, System Start, System Terminate,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-44

System Initialize

Purpose Specify custom system initialization code

Library Custom Code

Description The System Initialize block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemInitialize
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Initialize Function Declaration Code
Code to be added to the declaration section of the generated
SystemInitialize function.

System Initialize Function Execution Code
Code to be added to the execution section of the generated
SystemInitialize function.

System Initialize Function Exit Code
Code to be added to the exit section of the generated
SystemInitialize function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Outputs, System Start, System Terminate,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-45

System Outputs

Purpose Specify custom system outputs code

Library Custom Code

Description The System Outputs block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemOutputs
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Outputs Function Declaration Code
Code to be added to the declaration section of the generated
SystemOutputs function.

System Outputs Function Execution Code
Code to be added to the execution section of the generated
SystemOutputs function.

System Outputs Function Exit Code
Code to be added to the exit section of the generated
SystemOutputs function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Start, System Terminate,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-46

System Start

Purpose Specify custom system startup code

Library Custom Code

Description The System Start block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemStart
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Start Function Declaration Code
Code to be added to the declaration section of the generated
SystemStart function.

System Start Function Execution Code
Code to be added to the execution section of the generated
SystemStart function.

System Start Function Exit Code
Code to be added to the exit section of the generated SystemStart
function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs, System Terminate,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-47

System Terminate

Purpose Specify custom system termination code

Library Custom Code

Description The System Terminate block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemTerminate
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Terminate Function Declaration Code
Code to be added to the declaration section of the generated
SystemTerminate function.

System Terminate Function Execution Code
Code to be added to the execution section of the generated
SystemTerminate function.

System Terminate Function Exit Code
Code to be added to the exit section of the generated
SystemTerminate function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs, System Start,
System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-48

System Update

Purpose Specify custom system update code

Library Custom Code

Description The System Update block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemUpdate
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters System Update Function Declaration Code
Code to be added to the declaration section of the generated
SystemUpdate function.

System Update Function Execution Code
Code to be added to the execution section of the generated
SystemUpdate function.

System Update Function Exit Code
Code to be added to the exit section of the generated SystemUpdate
function.

Example See “Embed Custom Code Directly Into MdlStart Function”.

See Also Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs, System Start,
System Terminate
“Insert Custom Code Blocks” in the Simulink Coder documentation

5-49

Target Preferences

Purpose Configure model for specific IDE, tool chain, board, and processor

Library Simulink Coder/ Desktop Targets

Embedded Coder/ Embedded Targets

Description
Use the Target Preferences block to configure a model to for a specific
IDE/tool chain, board, and processor. Your MathWorks software
depends on this information to simulate the model and generate code
for your environment.

The appearance and contents of the Target Preferences block varies
widely, depending on the options you have selected. The following
sections describe the user interface elements in the Target Preferences
block, even though the Target Preferences block cannot simultaneously
display alluser interface elements.

For more information, see the Target Preferences topic in the User’s
Guide.

5-50

Target Preferences

Note The following actions update some model Configuration
Parameters with new values:

• Adding a Target Preferences block to your model and clicking Yes in
the Initialize Configuration Parameters dialog box.

• Opening the Target Preferences block in your model and selecting
a new IDE/Tool Chain.

• Opening the Target Preferences block in your model and applying
changes to the Board and Processor parameters.

Note If you are using a Windows host, use mapped network drives
instead of UNC paths to specify directory locations. Using UNC paths
with compilers that do not support them causes build errors.

Note The figures in this documentation include references to various
third-party vendors and products. These images aid with recognition
of specific user interface elements. Do not infer a preference or
endorsement for one vendor or product over another.

Dialog
Boxes

This reference page section contains the following subsections:

• “Board Pane” on page 5-53

• “Add Processor Dialog Box” on page 5-56

• “Linux Pane” on page 5-57

• “Windows Pane” on page 5-58

5-51

Target Preferences

Use the IDE/Tool Chain parameter to select the Integrated
Development Environment (IDE) or software build tool chain with
which you are working. Selecting an option automatically applies that
selection to the Target Preferences block and updates the panes and
options the block displays.

Target Preferences block dialog box provides tabbed access to the
following panes:

• Board Pane — Select the target board, processor, clock speed, and,
in some cases, RTOS. In addition, Add new on this pane opens the
Add Processor dialog box.

• Memory Pane — Set the memory allocation and layout on the
processor (memory mapping).

• Section Pane — Determine the arrangement and location of the
sections on the processor and compiler information.

• Linux Pane — For the Eclipse IDE: Specify the scheduling mode and
base rate task priority of the software to run on a Linux target.

• Windows Pane — For the Eclipse IDE: Specify the scheduling mode
of the software to run on a Windows target.

• VxWorks Pane — For the Wind River Diab/GCC (makefile generation
only): Specify the scheduling mode of the software to run on a
VxWorks target.

5-52

Target Preferences

Board Pane

The following options appear on the Board pane, which has separate
panels for Board Properties, Board Support, and IDE Support
labels.

Board
Select your target board from the list of options. Selecting a
specific board sets the value for the Processor parameter. If you
select a custom board, also set the Processor parameter.

Processor
The Board and Processor settings apply default values to many
of the remaining Target Preferences parameters, such as those
under the Memory and Section tabs.

5-53

Target Preferences

If the coder product supports an operating system for the
processor, it enables the Operating system option.

If you are using the Eclipse IDE and set Processor to
Generic/Custom, open the model Configuration Parameters and
use the Hardware Implementation pane to define the custom
hardware. With this approach, hardware support depends on
the Simulink Coder product, not on the coder product. For more
information, see “Hardware Implementation Pane”.

Note Selecting or reselecting a processor resets the solver and
some processor-specific parameters to their default values.

Add New
Clicking Add new opens a new dialog box where you specify
configuration information for a processor that is not on the
Processor list.

For details about the New Processor dialog box, refer to “Add
Processor Dialog Box” on page 5-56.

Delete
Delete a processor that you added to the Processor list. You
cannot delete the standard processors.

CPU Clock
Enter the actual clock rate the board uses. This action does
not change the rate on the board. Rather, the code generation
process requires this information to produce code that runs on
the hardware. Setting this value incorrectly causes timing and
profiling errors when you run the code on the hardware.

The timer uses the value of CPU clock to calculate the time for
each interrupt. For example, a model with a sine wave generator
block running at 1 kHz uses timer interrupts to generate sine

5-54

Target Preferences

wave samples at the specified rate. For example, using 100 MHz,
the timer calculates the sine generator interrupt period as follows:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires:

100,000,000/1000 = 1 Sine block interrupt per 100,000 clock ticks

Board Support
Select the following parameters and edit their values in the text
box on the right:

• Source files— Enter the full paths to source code files.

• Include paths— Add paths to include files.

• Libraries — Identify specific libraries for the processor.
Required libraries appear on the list by default. To add more
libraries, entering the full path to the library with the library
file in the text area.

• Initialize functions— If your project requires an initialize
function, enter it in this field. By default, this parameter is
empty.

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

Note Invalid or incorrect entries in these fields can cause errors
during code generation. When you enter a file path, library, or
function, the block does not verify that the path or function exists
or is valid.

5-55

Target Preferences

When entering a path to a file, library, or other custom code, use
the following string in the path to refer to the IDE installation
folder.

$(Install_dir)

Enter new paths or files (custom code items) one entry per
line. Include the full path to the file for libraries and source
code. Support options do not support functions that use return
arguments or values. These parameters accept only functions of
type void fname void as valid as entries.

You can also set up environment variables to use as folder
path tokens. For example, if you set up an environment
called USER_VAR, you can use it as a token when you define
a path in your Target Preferences block. For example:
$(USER_VAR)\myinstal\foo.c.

Operating System
Select an operating system or RTOS for your target. If your target
platform supports an operating system, the software enables the
Operating system parameter. Otherwise, the software disables
this option.

Add Processor Dialog Box

To add a new processor to the drop down list for the Processors option,
click the Add new button on the Board pane. The software opens
the Add Processor dialog box.

5-56

Target Preferences

Note You can use this feature to create duplicates of existing processors
with minor changes to the compiler and linker options. Avoid using this
feature to create profiles for processors that are not already supported.

New Name
Provide a name to identify your new processor. Use a valid C
string. The name you enter in this field appears on the list of
processors after you add the new processor.

If you do not provide an entry for each parameter, the coder
product returns an error message without creating a processor
entry.

Based On
When you add a processor, the dialog box uses the settings from
the currently selected processor as the basis for the new one. This
parameter displays the currently selected processor.

Compiler options
Identifies the processor family of the new processor to the
compiler. The string depends on the processor family or class.

Linker options
You can use this parameter to specify linker command options.
The IDE uses these options to modify how it links project files
when you build a project. To get information about specific linker
options you can enter here, consult the documentation for your
IDE.

Linux Pane

The Linux tab appears when you set IDE/Tool Chain to Eclipse and
set Operating System on the Board tab to Linux.

The Linux tab displays two options:

5-57

Target Preferences

Scheduling Mode
When you select free-running, the model generates
multi-threaded free-running code. Each rate in the model maps to
a separate thread in the generated code. Multi-threaded code can
potentially run faster than single threaded code.

When you select real-time, the model generates multi-threaded
real-time code: Each rate in the Simulink model runs at the
rate specified in the model. For example, a 1-second rate runs
at exactly 1-second intervals. The timing is provided by using
a Linux real-time clock.

Base rate task priority
The base rate in the model maps to a thread and runs as fast as
possible. You can use the value of the base rate priority to set a
static priority for the base rate task. By default, this rate is 40.

Allow tasks to execute concurrently

Note This parameter will be removed in a future release.

Enable multicore deployment. Selecting this option enables
generated multi-threading code to run concurrently on multicore
processors. By default, this option is disabled.

This parameter has been superseded. Configuring the model as
described in the following procedures hides the Allow tasks to
execute concurrently parameter from view.

To run target applications on multicore processors, follow the
procedures in “Running Target Applications on Multicore
Processors”.

Windows Pane

The Windows tab appears when you set IDE/Tool Chain to Eclipse
and set Operating System on the Board tab to Windows.

5-58

Target Preferences

The Windows tab displays one option:

Scheduling Mode
When you select free-running, the model generates
multi-threaded free-running code. Each rate in the model maps to
a separate thread in the generated code. Multi-threaded code can
potentially run faster than single threaded code.

When you select real-time, the model generates multi-threaded
real-time code: Each rate in the Simulink model runs at the
rate specified in the model. For example, a 1-second rate runs
at exactly 1-second intervals. The timing is provided by using a
Windows real-time clock.

Allow tasks to execute concurrently

Note This parameter will be removed in a future release.

Enable multicore deployment. Selecting this option enables
generated multi-threading code to run concurrently on multicore
processors. By default, this option is disabled.

This parameter has been superseded. Configuring the model as
described in the following procedures hides the Allow tasks to
execute concurrently parameter from view.

To run target applications on multicore processors, follow the
procedures in “Running Target Applications on Multicore
Processors”.

5-59

Task Sync

Purpose Spawn VxWorks task to run code of downstream function-call
subsystem or Stateflow chart

Library Asynchronous / Interrupt Templates

Description The Task Sync block spawns a VxWorks task that calls a function-call
subsystem or Stateflow chart. Typically, you place the Task Sync block
between an Async Interrupt block and a function-call subsystem block
or Stateflow chart. Alternatively, you might connect the Task Sync
block to the output port of a Stateflow diagram that has an event,
Output to Simulink, configured as a function call.

The Task Sync block performs the following functions:

• Uses the VxWorks system call taskSpawn to spawn an independent
task. When the task is activated, it calls the downstream function-call
subsystem code or Stateflow chart. The block calls taskDelete to
delete the task during model termination.

• Creates a semaphore to synchronize the connected subsystem with
execution of the block.

• Wraps the spawned task in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. The first call
to semTake specifies NO_WAIT. This allows the task to determine
whether a second semGive has occurred prior to the completion of
the function-call subsystem or chart. This would indicate that the
interrupt rate is too fast or the task priority is too low.

• Generates synchronization code (for example, semGive()). This code
allows the spawned task to run. The task in turn calls the connected
function-call subsystem code. The synchronization code can run at
interrupt level. This is accomplished through the connection between
the Async Interrupt and Task Sync blocks, which triggers execution
of the Task Sync block within an ISR.

• Supplies absolute time if blocks in the downstream algorithmic code
require it. The time is supplied either by the timer maintained by

5-60

Task Sync

the Async Interrupt block, or by an independent timer maintained by
the task associated with the Task Sync block.

When you design your application, consider when timer and signal input
values should be taken for the downstream function-call subsystem that
is connected to the Task Sync block. By default, the time and input
data are read when VxWorks activates the task. For this case, the data
(input and time) are synchronized to the task itself. If you select the
Synchronize the data transfer of this task with the caller task
option and the Task Sync block is driven by an Async Interrupt block,
the time and input data are read when the interrupt occurs (that is,
within the ISR). For this case, data is synchronized with the caller of
the Task Sync block.

Parameters Task name (10 characters or less)
The first argument passed to the VxWorks taskSpawn system call.
VxWorks uses this name as the task function name. This name
also serves as a debugging aid; routines use the task name to
identify the task from which they are called.

Simulink task priority (0–255)
The VxWorks task priority to be assigned to the function-call
subsystem task when spawned. VxWorks priorities range from 0
to 255, with 0 representing the highest priority.

Note The Simulink software does not simulate asynchronous
task behavior. The task priority of an asynchronous task is
for code generation purposes only and is not honored during
simulation.

Stack size (bytes)
Maximum size to which the task’s stack can grow. The stack size
is allocated when VxWorks spawns the task. Choose a stack size
based on the number of local variables in the task. You should

5-61

Task Sync

determine the size by examining the generated code for the task
(and all functions that are called from the generated code).

Synchronize the data transfer of this task with the caller task
If not checked (the default),

• The block maintains a timer that provides absolute time values
required by the computations of downstream blocks. The timer
is independent of the timer maintained by the Async Interrupt
block that calls the Task Sync block.

• A Timer resolution option appears.

• The Timer size option specifies the word size of the time
counter.

If checked,

• The block does not maintain an independent timer, and does
not display the Timer resolution field.

• Downstream blocks that require timers use the timer
maintained by the Async Interrupt block that calls the Task
Sync block (see “Use Timers in Asynchronous Tasks” in the
Simulink Coder documentation). The timer value is read at the
time the asynchronous interrupt is serviced, and data transfers
to blocks called by the Task Sync block and execute within the
task associated with the Async Interrupt block. Therefore, data
transfers are synchronized with the caller.

Timer resolution (seconds)
The resolution of the block’s timer in seconds. This option appears
only if Synchronize the data transfer of this task with the
caller task is not checked. By default, the block gets the timer
value by calling the VxWorks tickGet function. The default
resolution is 1/60 second. The tickGet resolution for your BSP
might be different. You should determine the tickGet resolution
for your BSP and enter it in the Timer resolution field.

5-62

Task Sync

Timer size
The number of bits to be used to store the clock tick for a hardware
timer. The size can be 32bits (the default), 16bits, 8bits, or
auto. If you select auto, the Simulink Coder software determines
the timer size based on the settings of Application lifespan
(days) and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for the code generator to handle as a 32-bit integer of
the specified resolution, it uses a second 32-bit integer to address
overflows.

For more information, see “Control Memory Allocation for Time
Counters”. See also “Use Timers in Asynchronous Tasks”.

Inputs and
Outputs

Input
A call from an Async Interrupt block.

Output
A call to a function-call subsystem.

See Also Async Interrupt
“Handle Asynchronous Events” in the Simulink Coder documentation

5-63

UDP Receive

Purpose Receive UDP packet

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Embedded Coder/ Embedded Targets/ Operating Systems/ VxWorks

Simulink Coder/ Desktop Targets/ Host Communication

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from linuxlib or windowslib.

Description The UDP Receive block receives UDP packets from an IP network port
and saves them to its buffer. With each sample, the block output, emits
the contents of a single UDP packet as a data vector.

The generated code for this block relies on prebuilt .dll files. You can
run this code outside the MATLAB environment, or redeploy it, but be
sure to account for these extra .dll files when doing so. The packNGo
function creates a single zip file containing all of the pieces required to
run or rebuild this code. See packNGo for more information.

5-64

UDP Receive

Dialog

Local IP port
Specify the IP port number upon to receive UDP packets. This
value defaults to 25000. The value can range 1–65535. 5-65

UDP Receive

Note On Linux, to set the IP port number below 1024, run
MATLAB with root privileges. For example, at the Linux
command line, enter:

sudo matlab

Remote IP address ('0.0.0.0' to accept all)
Specify the IP address from which to accept packets. Entering a
specific IP address blocks UDP packets from other addresses. To
accept packets from any IP address, enter '0.0.0.0'. This value
defaults to '0.0.0.0'.

Receive buffer size (bytes)
Make the receive buffer large enough to avoid data loss caused by
buffer overflows. This value defaults to 8192.

Maximum length for Message
Specify the maximum length, in vector elements, of the data
output vector. Set this parameter to a value equal or greater than
the data size of a UDP packet. The system truncates data that
exceeds this length. This value defaults to 255.

If you disable Output variable-size signal, the block outputs
a fixed-length output the same length as the Maximum length
for Message.

Data type for Message
Set the data type of the vector elements in the Message output.
Match the data type with the data input used to create the UDP
packets. This option defaults to uint8.

Output variable-size signal
If your model supports signals of varying length, enable the
Output variable-size signal parameter. This checkbox defaults
to selected (enabled). In that case:

5-66

UDP Receive

• The output vector varies in length, depending on the amount of
data in the UDP packet.

• The block emits the data vector from a single unlabeled output.

If your model does not support signals of varying length, disable
the Output variable-size signal parameter. In that case:

• The block emits a fixed-length output the same length as the
Maximum length for Message.

• If the UDP packet contains less data than the fixed-length
output, the difference contains invalid data.

• The block emits the data vector from theMessage output.

• The block emits the length of the valid data from the Length
output.

• The block dialog box displays the Data type for Length
parameter.

In both cases, the block truncates data that exceeds the
Maximum length for Message.

Data type for Length
Set the data type of the Length output. This option defaults to
double.

Blocking time (seconds)
For each sample, wait this length of time for a UDP packet before
returning control to the scheduler. This value defaults to inf,
which indicates to wait indefinitely.

Note This parameter appears only in the Embedded Coder UDP
Receive block.

Sample time (seconds)
Specify how often the scheduler runs this block. Enter a value
greater than zero. In real-time operation, setting this option to a

5-67

UDP Receive

large value reduces the likelihood of dropped UDP messages. This
value defaults to a sample time of 0.01 s.

Output port width
Specify the width of packets the block accepts. When you design
the transmit end of the UDP communication channel, you decide
the packet width. Set this option to a value as large or larger than
a packet you expect to receive.

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block.

UDP receive buffer size (bytes)
Specify the size of the buffer to which the system stores UDP
packets. The default size is 8192 bytes. Make the buffer large
enough to store UDP packets that come in while your process
reads a packet from the buffer or performs other tasks. Specifying
the buffer size prevents the receive buffer from overflowing.

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Send

5-68

UDP Send

Purpose Send UDP message

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Embedded Coder/ Embedded Targets/ Operating Systems/ VxWorks

Simulink Coder/ Desktop Targets/ Host Communication

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from linuxlib or windowslib.

Description
The UDP Send block transmits an input vector as a UDP message over
an IP network port.

The generated code for this block relies on prebuilt .dll files. You can
run this code outside the MATLAB environment, or redeploy it, but be
sure to account for these extra .dll files when doing so. The packNGo
function creates a single zip file containing all of the pieces required to
run or rebuild this code. See packNGo for more information.

5-69

UDP Send

Dialog
Box

IP address ('255.255.255.255' for broadcast)
Specify the IP address or hostname to which the block sends
the message. To broadcast the UDP message, retain the default
value, '255.255.255.255'.

Remote IP port
Specify the port to which the block sends the message. The value
defaults to 25000, but the values range from 1–65535.

Note On Linux, to set the IP port number below 1024, run
MATLAB with root privileges. For example, at the Linux
command line, enter:

sudo matlab

5-70

UDP Send

Local IP port source
To let the system automatically assign the port number, select
Assign automatically. To specify the IP port number using the
Local IP port parameter, select Specify.

Local IP port
Specify the IP port number from which the block sends the
message.

If the receiving address expects messages from a particular port
number, enter that number here.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

Note This parameter only appears in a deprecated version of the
UDP Send block. Replace the deprecated UDP Send block with a
current UDP Send block.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Receive

5-71

Unprotected RT

Purpose Handle transfer of data between blocks operating at different rates
and maintain determinism

Library VxWorks (vxlib1)

Description The Unprotected RT block is a Rate Transition block that is
preconfigured to conduct deterministic data transfers. For more
information, see Rate Transition in the SimulinkVxWorks Reference.

5-72

Windows Task

Purpose Spawn task function as separate Windows thread

Library Windows (windowslib)

Description
This block spawns a task function as a separate Windows thread. The
task function runs the code of the downstream function-call subsystem.
For example:

In order to use this block, set the System target file parameter to
idelink_ert.tlc or idelink_ert.tlc. The System target file
parameter is located on the Code Generation pane of the Model
Configuration Parameters dialog, which you can view by selecting your
model and pressing Ctrl+E.

Thread priority in Windows operating systems ranges from 0 to 31
(low-to-high priority). The following two criteria determine the priority
of a given thread:

• Priority class

• Priority level within the priority class

5-73

Windows Task

The priority classes in Windows are as follows:

• IDLE_PRIORITY_CLASS

• BELOW_NORMAL_PRIORITY_CLASS

• NORMAL_PRIORITY_CLASS

• ABOVE_NORMAL_PRIORITY_CLASS

• HIGH_PRIORITY_CLASS

• REALTIME_PRIORITY_CLASS

The Windows Task block always uses a process priority of
NORMAL_PRIORITY_CLASS.

In the Windows Task block, you can use the Thread priority level
parameter specify the following the priority levels within in the
NORMAL_PRIORITY_CLASS:

• THREAD_PRIORITY_LOWEST

• THREAD_PRIORITY_BELOW_NORMAL

• THREAD_PRIORITY_NORMAL

• THREAD_PRIORITY_ABOVE_NORMAL

• THREAD_PRIORITY_HIGHEST

5-74

Windows Task

Dialog

Task name
Assign a name to this task. You can enter up to 32 letters and
numbers. Do not use standard C reserved characters, such as the
/ and : characters.

Thread priority level
Set the priority for the thread. Higher-priority tasks can preempt
lower-priority tasks.

Select one of the following five priority classes:

• THREAD_PRIORITY_LOWEST

• THREAD_PRIORITY_BELOW_NORMAL

• THREAD_PRIORITY_NORMAL

• THREAD_PRIORITY_ABOVE_NORMAL

• THREAD_PRIORITY_HIGHEST

5-75

Windows Task

5-76

6

Configuration Parameters
for Simulink Models

• “Code Generation Pane: General” on page 6-2

• “Code Generation Pane: Report” on page 6-42

• “Code Generation Pane: Comments” on page 6-69

• “Code Generation Pane: Symbols” on page 6-95

• “Code Generation Pane: Custom Code” on page 6-133

• “Code Generation Pane: Debug” on page 6-150

• “Code Generation Pane: Interface” on page 6-160

• “Code Generation Pane: RSim Target” on page 6-243

• “Code Generation Pane: S-Function Target” on page 6-249

• “Code Generation Pane: Tornado Target” on page 6-255

• “Code Generation Pane: IDE Link” on page 6-284

• “Parameter Reference” on page 6-318

6 Configuration Parameters for Simulink® Models

Code Generation Pane: General
When the Simulink Coder product is installed on your system and you select a
GRT-based target, the Code Generation General pane includes the following
parameters.

When the Simulink Coder product is installed on your system and you
select an ERT-based target, the Code Generation General pane includes the
following parameters. ERT-based target parameters require an Embedded
Coder license when generating code.

6-2

Code Generation Pane: General

6-3

6 Configuration Parameters for Simulink® Models

In this section...

“Code Generation: General Tab Overview” on page 6-5

“System target file” on page 6-6

“Language” on page 6-8

“Compiler optimization level” on page 6-10

“Custom compiler optimization flags” on page 6-12

“TLC options” on page 6-13

“Generate makefile” on page 6-15

“Make command” on page 6-17

“Template makefile” on page 6-19

“Ignore custom storage classes” on page 6-21

“Ignore test point signals” on page 6-23

“Select objective” on page 6-25

“Prioritized objectives” on page 6-27

“Set objectives” on page 6-28

“Set Objectives — Code Generation Advisor Dialog Box” on page 6-29

“Check model” on page 6-32

“Check model before generating code” on page 6-33

“Generate code only” on page 6-35

“Build/Generate code” on page 6-37

“Package code and artifacts” on page 6-38

“Zip file name” on page 6-40

6-4

Code Generation Pane: General

Code Generation: General Tab Overview
Set up general information about code generation for a model’s active
configuration set, including target selection, documentation, and build process
parameters.

See Also
“Code Generation Pane: General” on page 6-2

6-5

6 Configuration Parameters for Simulink® Models

System target file
Specify the system target file.

Settings
Default: grt.tlc

You can specify the system target file in these ways:

• Use the System Target File Browser. Click the Browse button, which lets
you select a preset target configuration consisting of a system target file,
template makefile, and make command.

• Enter the name of your system target file in this field.

Tips

• The System Target File Browser lists all system target files found on
the MATLAB path. Some system target files require additional licensed
products, such as the Embedded Coder product.

• To configure your model for rapid simulation, select rsim.tlc.

• To configure your model for xPC Target™, select xpctarget.tlc or
xpctargetert.tlc.

Command-Line Information

Parameter: SystemTargetFile
Type: string
Value: valid system target file
Default: 'grt.tlc'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

6-6

Code Generation Pane: General

Application Setting

Efficiency No impact

Safety precaution No impact (GRT)
ERT based (requires Embedded Coder
license)

See Also
“Available Targets”

6-7

6 Configuration Parameters for Simulink® Models

Language
Specify C or C++ code generation.

Settings
Default: C

C
Generates .c files and places the files in your build folder.

C++
Generates C++ compatible .cpp files and places the files in your build
folder.

C++ (Encapsulated)
Generates C++ encapsulated .cpp files and places the files in your build
folder. Selecting this value causes the build to generate a C++ class
interface to model code. The generated interface encapsulates required
model data into C++ class attributes and model entry point functions
into C++ class methods.

Note Using C++ (Encapsulated) for code generation requires
an Embedded Coder license and the ERT target. The value C++
(Encapsulated) appears in the Language menu if you select an ERT
target for your model, but you cannot use the ERT target and the C++
(Encapsulated) value for model building without an Embedded Coder
license.

Tip
You might need to configure the Simulink Coder software to use a compiler
before you build a system.

Command-Line Information

Parameter: TargetLang
Type: string
Value: 'C' | 'C++' | 'C++ (Encapsulated)'
Default: 'C'

6-8

Code Generation Pane: General

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Choose and Configure a Compiler”

“Function Prototype Control”

“C++ Encapsulation Interface Control”

6-9

6 Configuration Parameters for Simulink® Models

Compiler optimization level
Provides flexible and generalized control over compiler optimizations for
building generated code.

Settings
Default: Optimizations off (faster builds)

Optimizations off (faster builds)
Customizes compilation during the Simulink Coder makefile build
process to minimize compilation time.

Optimizations on (faster runs)
Customizes compilation during the Simulink Coder makefile build
process to minimize run time.

Custom
Allows you to specify custom compiler optimization flags to be applied
during the Simulink Coder makefile build process.

Tips

• Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds) allow you to easily toggle compiler
optimizations on and off during code development.

• Custom allows you to enter custom compiler optimization flags at Simulink
GUI level, rather than editing compiler flags into template makefiles
(TMFs) or supplying compiler flags to Simulink Coder make commands.

• If you specify compiler options for your Simulink Coder makefile build
using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE, the
value of Compiler optimization level is ignored and a warning is issued
about the ignored parameter.

6-10

Code Generation Pane: General

Dependencies
This parameter enables Custom compiler optimization flags.

Command-Line Information

Parameter: RTWCompilerOptimization
Type: string
Value: 'Off' | 'On' | 'Custom'
Default: 'Off'

Recommended Settings

Application Setting

Debugging Optimizations off (faster builds)

Traceability Optimizations off (faster builds)

Efficiency Optimizations on (faster runs)
(execution), No impact (ROM, RAM)

Safety precaution No impact

See Also

• “Custom compiler optimization flags” on page 6-12

• “Control Compiler Optimizations”

6-11

6 Configuration Parameters for Simulink® Models

Custom compiler optimization flags
Specify compiler optimization flags to be applied to building the generated
code for your model.

Settings
Default: ''

Specify compiler optimization flags without quotes, for example, -O2.

Dependency
This parameter is enabled by selecting the value Custom for the parameter
Compiler optimization level.

Command-Line Information

Parameter: RTWCustomCompilerOptimizations
Type: string
Value: '' | user-specified flags
Default: ''

Recommended Settings
See “Compiler optimization level” on page 6-10.

See Also

• “Compiler optimization level” on page 6-10

• “Control Compiler Optimizations”

6-12

Code Generation Pane: General

TLC options
Specify Target Language Compiler (TLC) options for code generation.

Settings
Default: ''

You can enter TLC command-line options and arguments.

Tips

• Specifying TLC options does not add flags to theMake command field.

• The summary section of the generated HTML report lists the TLC options
that you specify for the build in which you generate the report.

Command-Line Information

Parameter: TLCOptions
Type: string
Value: valid TLC argument
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Specify TLC Options”

• “Command-Line Arguments”

6-13

6 Configuration Parameters for Simulink® Models

• “Customize Build Process with STF_make_rtw_hook File”

• “Target Development and the Build Process”

6-14

Code Generation Pane: General

Generate makefile
Specify generation of a makefile.

Settings
Default: on

On
Generates a makefile for a model during the build process.

Off
Suppresses the generation of a makefile. You must set up any post
code generation build processing, including compilation and linking, as
a user-defined command.

Dependencies
This parameter enables:

• Make command

• Template makefile

Command-Line Information

Parameter: GenerateMakefile
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-15

6 Configuration Parameters for Simulink® Models

See Also

• “Customize Post-Code-Generation Build Processing”

• “Customize Build Process with STF_make_rtw_hook File”

• “Target Development and the Build Process”

6-16

Code Generation Pane: General

Make command
Specify a make command and optionally append make command arguments.

Settings
Default: make_rtw

The make command, a high-level MATLAB command, invoked when you start
a build, controls the Simulink Coder build process.

• Each target has an associated make command, automatically supplied
when you select a target file using the System Target File Browser.

• Some third-party targets supply a make command. See the vendor’s
documentation.

• You can specify arguments in the Make command field which pass into
the makefile-based build process. Append the arguments after the make
command, as in the following example:

make_rtw OPTS="-DMYDEFINE=1"

The syntax for make command options differs slightly for different
compilers.

Tip
Most targets use the default command.

Dependency
This parameter is enabled by Generate makefile.

Command-Line Information

Parameter: MakeCommand
Type: string
Value: valid make command MATLAB language file
Default: 'make_rtw'

6-17

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution make_rtw

See Also

• “Template Makefiles and Make Options”

• “Customize Build Process with STF_make_rtw_hook File”

• “Target Development and the Build Process”

6-18

Code Generation Pane: General

Template makefile
Specify a template makefile.

Settings
Default: grt_default_tmf

The template makefile determines which compiler runs, during the make
phase of the build, to compile the generated code. You can specify template
makefiles in the following ways:

• Generate a value by selecting a target configuration using the System
Target File Browser.

• Explicitly enter a custom template makefile filename (including the
extension). The file must be on the MATLAB path.

Tips

• If you do not include a filename extension for a custom template makefile,
the code generator attempts to find and execute a MATLAB language file.

• You can customize your build process by modifying an existing template
makefile or by providing your own template makefile.

Dependency
This parameter is enabled by Generate makefile.

Command-Line Information

Parameter: TemplateMakefile
Type: string
Value: valid template makefile filename
Default: 'grt_default_tmf'

6-19

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Template Makefiles and Make Options”

• “Available Targets”

6-20

Code Generation Pane: General

Ignore custom storage classes
Specify whether to apply or ignore custom storage classes.

Settings
Default: off

On
Ignores custom storage classes by treating data objects that have them
as if their storage class attribute is set to Auto. Data objects with an
Auto storage class do not interface with external code and are stored as
local or shared variables or in a global data structure.

Off
Applies custom storage classes as specified. You must clear this option
if the model defines data objects with custom storage classes.

Tips

• Clear this parameter before configuring data objects with custom storage
classes.

• Setting for top-level and referenced models must match.

Dependencies

• This parameter only appears for ERT-based targets.

• Clear this parameter to enable module packaging features.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: IgnoreCustomStorageClasses
Type: string
Value: 'on' | 'off
Default: 'off'

6-21

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Custom Storage Classes” in the Embedded Coder documentation

6-22

Code Generation Pane: General

Ignore test point signals
Specify allocation of memory buffers for test points.

Settings
Default: Off

On
Ignores test points during code generation, allowing optimal buffer
allocation for signals with test points, facilitating transition from
prototyping to deployment and avoiding accidental degradation of
generated code due to workflow artifacts.

Off
Allocates separate memory buffers for test points, resulting in a loss
of code generation optimizations such as reducing memory usage by
storing signals in reusable buffers.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: IgnoreTestpoints
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off

Traceability No impact

6-23

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency On

Safety precaution No impact

See Also

• “Signals with Test Points” in the Simulink Coder documentation

• “Test Points” in the Simulink documentation

• “Signals” in the Simulink Coder documentation

6-24

Code Generation Pane: General

Select objective
Select code generation objectives to use with the Code Generation Advisor.

Settings
Default: Unspecified

Unspecified
No objective specified. Do not optimize code generation settings using
the Code Generation Advisor.

Debugging
Specifies debugging objective. Optimize code generation settings for
debugging the code generation build process using the Code Generation
Advisor.

Execution efficiency
Specifies execution efficiency objective. Optimize code generation
settings to achieve fast execution time using the Code Generation
Advisor.

Tips
For more objectives, specify an ERT-based target.

Dependency
These parameters appear only for GRT-based targets.

Command-Line Information

Parameter: 'ObjectivePriorities'
Type: cell array of strings
Value: {''} | {'Debugging'} | {'Execution efficiency'}
Default: {''}

6-25

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging Debugging

Traceability Not applicable for GRT-based targets

Efficiency Execution efficiency

Safety precaution Not applicable for GRT-based targets

See Also

• “Application Objectives” in the Embedded Coder documentation.

• “Application Objectives” in the Simulink Coder documentation.

6-26

Code Generation Pane: General

Prioritized objectives
Lists objectives that you specify by clicking the Set objectives button.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Command: get_param('model', 'ObjectivePriorities')

See Also

• “Application Objectives” in the Embedded Coder documentation.

• “Application Objectives” in the Simulink Coder documentation.

6-27

6 Configuration Parameters for Simulink® Models

Set objectives
Opens Configuration Set Objectives dialog box.

Dependency
This button appears only for ERT-based targets.

See Also

• “Application Objectives” in the Embedded Coder documentation.

• “Application Objectives” in the Simulink Coder documentation.

6-28

Code Generation Pane: General

Set Objectives — Code Generation Advisor Dialog
Box
Select and prioritize code generation objectives to use with the Code
Generation Advisor.

Settings

1 From the Available objectives list, select objectives.

2 Click the select button (arrow pointing right) to move the objectives that
you selected into the Selected objectives - prioritized list.

3 Click the higher priority (up arrow) and lower priority (down arrow)
buttons to prioritize the objectives.

Objectives. List of available objectives.

Execution efficiency — Configure code generation settings to achieve
fast execution time.

6-29

6 Configuration Parameters for Simulink® Models

ROM efficiency — Configure code generation settings to reduce ROM
usage.
RAM efficiency — Configure code generation settings to reduce RAM
usage.
Traceability — Configure code generation settings to provide mapping
between model elements and code.
Safety precaution — Configure code generation settings to increase
clarity, determinism, robustness, and verifiability of the code.
Debugging — Configure code generation settings to debug the code
generation build process.
MISRA-C:2004 guidelines — Configure code generation settings to
increase compliance with MISRA-C:2004 guidelines.

Note If you select the MISRA-C:2004 guidelines code generation objective,
the Code Generation Advisor checks:

• The model configuration settings for compliance with the MISRA-C:2004
configuration setting recommendations.

• For blocks that are not supported or recommended for MISRA-C:2004
compliant code generation.

Priorities. After you select objectives from the Available objectives
parameter, organize the objectives in the Selected objectives - prioritized
parameter with the highest priority objective at the top.

Dependency
This dialog box appears only for ERT-based targets.

Command-Line Information

Parameter: 'ObjectivePriorities'
Type: cell array of strings; any combination of the available values
Value: {''} | {'Execution efficiency'} | {'ROM efficiency'} |
{'RAM efficiency'} | {'Traceability'} | {'Safety precaution'} |
{'Debugging'}| {'MISRA-C:2004 guidelines'}

6-30

Code Generation Pane: General

Default: {''}

See Also

• “Application Objectives” in the Embedded Coder documentation.

• “Application Objectives” in the Simulink Coder documentation.

6-31

6 Configuration Parameters for Simulink® Models

Check model
Runs the Code Generation Advisor checks.

Settings

1 Specify code generation objectives using the Select objective parameter
(available with GRT-based targets) or in the Configuration Set Objectives
dialog box, by clicking Set objectives (available with ERT-based targets).

2 Click Check model. The Code Generation Advisor runs the code
generation objectives checks and provide suggestions for changing your
model to meet the objectives.

Dependency
You must specify objectives before checking the model.

See Also

• “Application Objectives” in the Embedded Coder documentation.

• “Application Objectives” in the Simulink Coder documentation.

6-32

Code Generation Pane: General

Check model before generating code
Choose whether to run Code Generation Advisor checks before generating
code.

Settings
Default: Off

Off
Generates code without checking whether the model meets code
generation objectives. The code generation report summary and file
headers indicate the specified objectives and that the validation was
not run.

On (proceed with warnings)
Checks whether the model meets code generation objectives using the
Code Generation Objectives checks in the Code Generation Advisor.
If the Code Generation Advisor reports a warning, the Simulink
Coder software continues generating code. The code generation report
summary and file headers indicate the specified objectives and the
validation result.

On (stop for warnings)
Checks whether the model meets code generation objectives using the
Code Generation Objectives checks in the Code Generation Advisor. If
the Code Generation Advisor reports a warning, the Simulink Coder
software does not continue generating code.

Command-Line Information

Parameter: CheckMdlBeforeBuild
Type: string
Value: 'Off' | 'Warning' | 'Error'
Default: 'Off'

6-33

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging On (proceed with warnings) or On
(stop for warnings)

Traceability On (proceed with warnings) or On
(stop for warnings)

Efficiency On (proceed with warnings) or On
(stop for warnings)

Safety precaution On (proceed with warnings) or On
(stop for warnings)

See Also

• “Application Objectives” in the Embedded Coder documentation.

• “Application Objectives” in the Simulink Coder documentation.

6-34

Code Generation Pane: General

Generate code only
Specify code generation versus an executable build.

Settings
Default: off

On
The caption of the Build/Generate code button becomes Generate
code. The build process generates code and a makefile, but it does not
invoke the make command.

Off
The caption of the Build/Generate code button becomes Build. The
build process generates and compiles code, and creates an executable
file.

Tip
Generate code only generates a makefile only if you select Generate
makefile.

Dependency
This parameter changes the function of the Build/Generate code button.

Command-Line Information

Parameter: GenCodeOnly
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off

Traceability No impact

6-35

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Customize Post-Code-Generation Build Processing”

6-36

Code Generation Pane: General

Build/Generate code
Start the build or code generation process.

Tip
You can also start the build process by pressing Ctrl+B.

Dependency
When you select Generate code only, the caption of the Build button
changes to Generate code.

Command-Line Information

Command: rtwbuild
Type: string
Value: 'modelname'

Recommended Settings

Application Setting

Debugging Build

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Initiate the Build Process”

6-37

6 Configuration Parameters for Simulink® Models

Package code and artifacts
Specify whether to automatically package generated code and artifacts for
relocation.

Settings
Default: off

On
The build process runs the packNGo function after code generation to
package generated code and artifacts for relocation.

Off
The build process does not run packNGo after code generation.

Dependency
Selecting this parameter enables Zip file name and clearing this parameter
disables Zip file name.

Command-Line Information

Parameter: PackageGeneratedCodeAndArtifacts
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-38

Code Generation Pane: General

See Also

• “Relocate Code to Another Development Environment”

• “packNGo Function Limitations”

6-39

6 Configuration Parameters for Simulink® Models

Zip file name
Specify the name of the .zip file in which to package generated code and
artifacts for relocation.

Settings
Default: ''

You can enter the name of the zip file in which to package generated code
and artifacts for relocation. The file name can be specified with or without
the .zip extension. If you specify no extension or an extension other than
.zip, the zip utility adds the .zip extension. If no value is specified, the
build process uses the name model.zip, where model is the name of the top
model for which code is being generated.

Dependency
This parameter is enabled by Package code and artifacts.

Command-Line Information

Parameter: PackageName
Type: string
Value: valid name for a .zip file
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-40

Code Generation Pane: General

See Also

• “Relocate Code to Another Development Environment”

• “packNGo Function Limitations”

6-41

6 Configuration Parameters for Simulink® Models

Code Generation Pane: Report
The Code Generation > Report pane includes the following parameters
when the Simulink Coder product is installed on your system and you select
a GRT-based target.

The Code Generation > Report pane includes the following parameters
when the Simulink Coder product is installed on your system and you select
an ERT-based target. ERT-based target parameters require an Embedded
Coder license when generating code.

In this section...

“Code Generation: Report Tab Overview” on page 6-44

“Create code generation report” on page 6-45

“Open report automatically” on page 6-48

6-42

Code Generation Pane: Report

In this section...

“Code-to-model” on page 6-50

“Model-to-code” on page 6-52

“Generate model Web view” on page 6-54

“Configure” on page 6-56

“Eliminated / virtual blocks” on page 6-57

“Traceable Simulink blocks” on page 6-59

“Traceable Stateflow objects” on page 6-61

“Traceable MATLAB functions” on page 6-63

“Static code metrics” on page 6-65

“Summarize which blocks triggered code replacements” on page 6-67

6-43

6 Configuration Parameters for Simulink® Models

Code Generation: Report Tab Overview
Control the code generation report that the Simulink Coder software
automatically creates.

Configuration
To create a code generation report during the build process, select the Create
code generation report parameter.

See Also

• “Generate a Code Generation Report”

• “Reports for Code Generation”

If you have an Embedded Coder license, see also “HTML Code Generation
Report Extensions”.

• “Code Generation Pane: Report” on page 6-42

6-44

Code Generation Pane: Report

Create code generation report
Document generated code in an HTML report.

Settings
Default: Off

On
Generates a summary of code generation source files in an HTML
report. Places the report files in an html subfolder within the build
folder. In the report,

• The Summary section lists version and date information. The
Configuration Settings at the Time of Code Generation link
opens a noneditable view of the Configuration Parameters dialog that
shows the Simulink model settings, including TLC options, at the
time of code generation.

• The Subsystem Report section contains information on nonvirtual
subsystems in the model.

• The Code Interface Report section provides information about
the generated code interface, including model entry point functions
and input/output data (requires an Embedded Coder license and the
ERT target).

• The Traceability Report section allows you to account for
Eliminated / Virtual Blocks that are untraceable, versus the listed
Traceable Simulink Blocks / Stateflow Objects / MATLAB
Scripts, providing a complete mapping between model elements and
code (requires an Embedded Coder license and the ERT target).

• The Static Code Metrics Report section provides statistics of the
generated code. Metrics are estimated from static analysis of the
generated code.

• The Code Replacements Report section allows you to account for
code replacement library (CRL) functions that were used during code
generation, providing a mapping between each replacement instance
and the Simulink block that triggered the replacement.

6-45

6 Configuration Parameters for Simulink® Models

In the Generated Files section, you can click the names of source code
files generated from your model to view their contents in a MATLAB
Web browser window. In the displayed source code,

• Global variable instances are hyperlinked to their definitions.

• If you selected the traceability option Code-to-model, hyperlinks
within the displayed source code let you view the blocks or subsystems
from which the code was generated. Click on the hyperlinks to view
the relevant blocks or subsystems in a Simulink model window
(requires an Embedded Coder license and the ERT target).

• If you selected the traceability option Model-to-code, you can view
the generated code for a block in the model. To highlight a block’s
generated code in the HTML report, right-click the block and select
C/C++ Code > Navigate to C/C++ Code (requires an Embedded
Coder license and the ERT target).

• If you set the Code coverage tool parameter on the Code
Generation > Verification pane, you can view the code coverage
data and annotations in the generated code in the HTML Code
Generation Report (requires an Embedded Coder license and the
ERT target).

Off
Does not generate a summary of files.

Dependency
This parameter enables and selects

• “Open report automatically” on page 6-48

• “Code-to-model” on page 6-50 (ERT target)

This parameter enables

• “Model-to-code” on page 6-52 (ERT target)

• “Eliminated / virtual blocks” on page 6-57 (ERT target)

• “Traceable Simulink blocks” on page 6-59 (ERT target)

• “Traceable Stateflow objects” on page 6-61 (ERT target)

6-46

Code Generation Pane: Report

• “Traceable MATLAB functions” on page 6-63 (ERT target)

.

Command-Line Information

Parameter: GenerateReport
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

See Also
“Reports for Code Generation”

If you have an Embedded Coder license, see also “HTML Code Generation
Report Extensions”.

If you have an Embedded Coder license, see also “Code Coverage in SIL and
PIL Simulations”.

6-47

6 Configuration Parameters for Simulink® Models

Open report automatically
Specify whether to display code generation reports automatically.

Settings

Default: Off

On
Displays the code generation report automatically in a new browser
window.

Off
Does not display the code generation report, but the report is still
available in the html folder.

Dependency
This parameter is enabled and selected by Create code generation report.

Command-Line Information

Parameter: LaunchReport
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
“Reports for Code Generation”

6-48

Code Generation Pane: Report

If you have an Embedded Coder license, see also “HTML Code Generation
Report Extensions”.

6-49

6 Configuration Parameters for Simulink® Models

Code-to-model
Include hyperlinks in the code generation report that link code to the
corresponding Simulink blocks, Stateflow objects, and MATLAB functions
in the model diagram.

Settings
Default: Off

On
Includes hyperlinks in the code generation report that link code to
corresponding Simulink blocks, Stateflow objects, and MATLAB
functions in the model diagram. The hyperlinks provide traceability for
validating generated code against the source model.

Off
Omits hyperlinks from the generated report.

Tip
Clear this parameter to speed up code generation. For large models
(containing over 1000 blocks), generation of hyperlinks can be time consuming.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled and selected by Create code generation
report.

• You must select Include comments on the Code Generation >
Comments pane to use this parameter.

Command-Line Information

Parameter: IncludeHyperlinkInReport
Type: string
Value: 'on' | 'off
Default: 'off'

6-50

Code Generation Pane: Report

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

See Also
“HTML Code Generation Report Extensions”

6-51

6 Configuration Parameters for Simulink® Models

Model-to-code
Link Simulink blocks, Stateflow objects, and MATLAB functions in a model
diagram to corresponding code segments in a generated HTML report so that
the generated code for a block can be highlighted on request.

Settings
Default: Off

On
Includes model-to-code highlighting support in the code generation
report. To highlight the generated code for a Simulink block, Stateflow
object, or MATLAB script in the code generation report, right-click the
item and select C/C++ Code > Navigate to C/C++ Code.

Off
Omits model-to-code highlighting support from the generated report.

Tip
Clear this parameter to speed up code generation. For large models
(containing over 1000 blocks), generation of model-to-code highlighting
support can be time consuming.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled when you select Create code generation
report.

• This parameter selects:

- “Eliminated / virtual blocks” on page 6-57

- “Traceable Simulink blocks” on page 6-59

- “Traceable Stateflow objects” on page 6-61

- “Traceable MATLAB functions” on page 6-63

• You must select the following parameters to use this parameter:

6-52

Code Generation Pane: Report

- “Include comments” on page 6-72 on the Code Generation >
Comments pane

- At least one of the following:

• “Eliminated / virtual blocks” on page 6-57

• “Traceable Simulink blocks” on page 6-59

• “Traceable Stateflow objects” on page 6-61

• “Traceable MATLAB functions” on page 6-63

Command-Line Information

Parameter: GenerateTraceInfo
Type: Boolean
Value: on | off
Default: off

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

See Also
“HTML Code Generation Report Extensions”

6-53

6 Configuration Parameters for Simulink® Models

Generate model Web view
Include the model Web view in the code generation report to navigate between
the code and model within the same window. You can share your model
and generated code outside of the MATLAB environment. You must have a
Simulink Report Generator license to include a Web view of the model in
the code generation report.

Settings
Default: Off

On
Include model Web view in the code generation report.

Off
Omit model Web view in the code generation report.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled and selected by Create code generation
report.

• To enable traceability between the code and model, select Code-to-model
and Model-to-code.

Command-Line Information

Parameter: GenerateWebview
Type: string
Value: 'on' | 'off'
Default: 'off'

6-54

Code Generation Pane: Report

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
“Model Web View in Code Generation Report”

6-55

6 Configuration Parameters for Simulink® Models

Configure
Use the Configure button to open the Model-to-code navigation dialog
box. This dialog box provides a way for you to specify a build folder containing
previously-generated model code to highlight. Applying your build folder
selection will attempt to load traceability information from the earlier build,
for which Model-to-code must have been selected.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by “Model-to-code” on page 6-52.

See Also
“HTML Code Generation Report Extensions”

6-56

Code Generation Pane: Report

Eliminated / virtual blocks
Include summary of eliminated and virtual blocks in code generation report.

Settings
Default: Off

On
Includes a summary of eliminated and virtual blocks in the code
generation report.

Off
Does not include a summary of eliminated and virtual blocks.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Create code generation report.

• This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReport
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-57

6 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

6-58

Code Generation Pane: Report

Traceable Simulink blocks
Include summary of Simulink blocks in code generation report.

Settings
Default: Off

On
Includes a summary of Simulink blocks and the corresponding code
location in the code generation report.

Off
Does not include a summary of Simulink blocks.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Create code generation report.

• This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReportSl
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-59

6 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

6-60

Code Generation Pane: Report

Traceable Stateflow objects
Include summary of Stateflow objects in code generation report.

Settings
Default: Off

On
Includes a summary of Stateflow objects and the corresponding code
location in the code generation report.

Off
Does not include a summary of Stateflow objects.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Create code generation report.

• This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReportSf
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-61

6 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

“Traceability of Stateflow Objects in Generated Code”

6-62

Code Generation Pane: Report

Traceable MATLAB functions
Include summary of MATLAB functions in code generation report.

Settings
Default: Off

On
Includes a summary of MATLAB functions and corresponding code
locations in the code generation report.

Off
Does not include a summary of MATLAB functions.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Create code generation report.

• This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReportEml
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-63

6 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

6-64

Code Generation Pane: Report

Static code metrics
Include static code metrics report in the code generation report.

Settings
Default: Off

On
Include static code metrics report in the code generation report. The
static code metrics report does not support the C++ target language.

Off
Omit static code metrics report from the code generation report.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled when you select Create code generation
report.

Command-Line Information

Parameter: GenerateCodeMetricsReport
Type: Boolean
Value: on | off
Default: off

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-65

6 Configuration Parameters for Simulink® Models

See Also
“Analyze Static Code Metrics”

6-66

Code Generation Pane: Report

Summarize which blocks triggered code
replacements
Include code replacement report summarizing replacement functions used
and their associated blocks in the code generation report.

Settings
Default: Off

On
Include code replacement report in the code generation report.

Note Selecting this option also generates code replacement trace
information for viewing in the Trace Information tab of the Code
Replacement Viewer. The generated information can help you
determine why an expected code replacement did not occur.

Off
Omit code replacement report from the code generation report.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled when you select Create code generation
report.

Command-Line Information

Parameter: GenerateCodeReplacementReport
Type: Boolean
Value: on | off
Default: off

6-67

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• Analyze Code Replacements in the Generated Code

• Trace Code Replacements Generated Using Your Code Replacement
Library

• Determine Why Code Replacement Functions Were Not Used

6-68

Code Generation Pane: Comments

Code Generation Pane: Comments
The Code Generation Comments pane includes the following parameters
when the Simulink Coder product is installed on your system and you select
a GRT-based target.

The Code Generation Comments pane includes the following parameters
when the Simulink Coder product is installed on your system and you select
an ERT-based target. ERT-based target parameters require an Embedded
Coder license when generating code.

In this section...

“Code Generation: Comments Tab Overview” on page 6-71

“Include comments” on page 6-72

“Simulink block / Stateflow object comments” on page 6-74

“MATLAB source code as comments” on page 6-75

“Show eliminated blocks” on page 6-77

6-69

6 Configuration Parameters for Simulink® Models

In this section...

“Verbose comments for SimulinkGlobal storage class” on page 6-78

“Operator annotations” on page 6-79

“Simulink block descriptions” on page 6-81

“Simulink data object descriptions” on page 6-83

“Custom comments (MPT objects only)” on page 6-85

“Custom comments function” on page 6-87

“Stateflow object descriptions” on page 6-89

“Requirements in block comments” on page 6-91

“MATLAB function help text” on page 6-93

6-70

Code Generation Pane: Comments

Code Generation: Comments Tab Overview
Control the comments that the Simulink Coder software automatically creates
and inserts into the generated code.

See Also
“Code Generation Pane: Comments” on page 6-69

6-71

6 Configuration Parameters for Simulink® Models

Include comments
Specify which comments are in generated files.

Settings
Default: on

On
Places comments in the generated files based on the selections in the
Auto generated comments pane.

Off
Omits comments from the generated files.

Dependencies
This parameter enables:

• Simulink block / Stateflow object comments

• MATLAB source code as comments

• Show eliminated blocks

• Verbose comments for SimulinkGlobal storage class

Command-Line Information

Parameter: GenerateComments
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability On

6-72

Code Generation Pane: Comments

Application Setting

Efficiency No impact

Safety precaution On

6-73

6 Configuration Parameters for Simulink® Models

Simulink block / Stateflow object comments
Specify whether to insert Simulink block and Stateflow object comments.

Settings
Default: on

On
Inserts automatically generated comments that describe a block’s code
and objects. The comments precede that code in the generated file.

Off
Suppresses comments.

Dependency
This parameter is enabled by Include comments.

Command-Line Information

Parameter: SimulinkBlockComments
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-74

Code Generation Pane: Comments

MATLAB source code as comments
Specify whether to insert MATLAB source code as comments.

Settings
Default: off

On
Inserts MATLAB source code as comments in the generated code. The
comments precede the associated generated code.

Includes the function signature in the function banner.

Off
Suppresses comments and does not include the function signature in
the function banner.

Dependency
This parameter is enabled by Include comments.

Command-Line Information

Parameter: MATLABSourceComments
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-75

6 Configuration Parameters for Simulink® Models

See Also
“Include MATLAB Code as Comments in Generated Code”

6-76

Code Generation Pane: Comments

Show eliminated blocks
Specify whether to insert eliminated block’s comments.

Settings
Default: off

On
Inserts statements in the generated code from blocks eliminated as the
result of optimizations (such as parameter inlining).

Off
Suppresses statements.

Dependency
This parameter is enabled by Include comments.

Command-Line Information

Parameter: ShowEliminatedStatement
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-77

6 Configuration Parameters for Simulink® Models

Verbose comments for SimulinkGlobal storage class
You can control the generation of comments in the model parameter structure
declaration in model_prm.h. Parameter comments indicate parameter
variable names and the names of source blocks.

Settings
Default: off

On
Generates parameter comments regardless of the number of parameters.

Off
Generates parameter comments if less than 1000 parameters are
declared. This reduces the size of the generated file for models with a
large number of parameters.

Dependency
This parameter is enabled by Include comments.

Command-Line Information

Parameter: ForceParamTrailComments
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

6-78

Code Generation Pane: Comments

Operator annotations
Specify whether to include operator annotations for Polyspace® in the
generated code as comments.

Settings
Default: Off

On
Includes operator annotations in the generated code.

Off
Does not include operator annotations in the generated code.

Tips

• These annotations help document overflow behavior that is due to the way
the Embedded Coder software implements an operation. These operators
cannot be traced to an overflow in the design.

• Justify operators that the Polyspace software cannot prove. When this
option is enabled, if the Embedded Coder software uses one of these
operators, it adds annotations to the generated code to justify the operators
for Polyspace.

• Embedded Coder cannot justify operators that result from the design.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Include comments.

Command-Line Information

Parameter: OperatorAnnotations
Type: string
Value: 'on' | 'off'
Default: 'off'

6-79

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability On

Efficiency No impact

Safety precaution On

See Also
“Code Annotation for Justifying Polyspace Checks”

6-80

Code Generation Pane: Comments

Simulink block descriptions
Specify whether to insert descriptions of blocks into generated code as
comments.

Settings
Default: off

On
Includes the following comments in the generated code for each block in
the model, with the exception of virtual blocks and blocks removed due
to block reduction:

• The block name at the start of the code, regardless of whether you
select Simulink block / Stateflow object comments

• Text specified in the Description field of each Block Properties
dialog box

The block names and descriptions can include international
(non-US-ASCII) characters.

Off
Suppresses the generation of block name and description comments in
the generated code.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: InsertBlockDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

6-81

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
“Support for International (Non-US-ASCII) Characters”

6-82

Code Generation Pane: Comments

Simulink data object descriptions
Specify whether to insert descriptions of Simulink data objects into generated
code as comments.

Settings
Default: off

On
Inserts contents of the Description field in the Model Explorer Object
Properties pane for each Simulink data object (signal, parameter, and
bus objects) in the generated code as comments.

The descriptions can include international (non-US-ASCII) characters.

Off
Suppresses the generation of data object property descriptions as
comments in the generated code.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: SimulinkDataObjDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

6-83

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution No impact

6-84

Code Generation Pane: Comments

Custom comments (MPT objects only)
Specify whether to include custom comments for module packaging tool (MPT)
signal and parameter data objects in generated code.

Settings
Default: off

On
Inserts comments just above the identifiers for signal and parameter
MPT objects in generated code.

Off
Suppresses the generation of custom comments for signal and parameter
identifiers.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter requires that you include the comments in a function
defined in a MATLAB language file or TLC file that you specify with
Custom comments function.

Command-Line Information

Parameter: EnableCustomComments
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

6-85

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Add Custom Comments”

6-86

Code Generation Pane: Comments

Custom comments function
Specify a file that contains comments to be included in generated code for
module packing tool (MPT) signal and parameter data objects

Settings
Default: ''

Enter the name of the MATLAB language file or TLC file for the function that
includes the comments to be inserted of your MPT signal and parameter
objects. You can specify the file name directly or click Browse and search
for a file.

Tip
You might use this option to insert comments that document some or all
of the property values of an object.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Custom comments (MPT objects only).

Command-Line Information

Parameter: CustomCommentsFcn
Type: string
Value: valid file name
Default: ''

Recommended Settings

Application Setting

Debugging Valid file name

Traceability Valid file name

6-87

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Add Custom Comments”

6-88

Code Generation Pane: Comments

Stateflow object descriptions
Specify whether to insert descriptions of Stateflow objects into generated
code as comments.

Settings
Default: off

On
Inserts descriptions of Stateflow states, charts, transitions, and
graphical functions into generated code as comments. The descriptions
come from the Description field in Object Properties pane in the Model
Explorer for these Stateflow objects. The comments appear just above
the code generated for each object.

The descriptions can include international (non-US-ASCII) characters.

Off
Suppresses the generation of comments for Stateflow objects.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires a Stateflow license.

Command-Line Information

Parameter: SFDataObjDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

6-89

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Support for International (Non-US-ASCII) Characters”

6-90

Code Generation Pane: Comments

Requirements in block comments
Specify whether to include requirement descriptions assigned to Simulink
blocks in generated code as comments.

Settings
Default: off

On
Inserts the requirement descriptions that you assign to Simulink blocks
into the generated code as comments. The Simulink Coder software
includes the requirement descriptions in the generated code in the
following locations.

Model Element Requirement Description Location

Model In the main header file model.h

Nonvirtual
subsystems

At the call site for the subsystem

Virtual subsystems At the call site of the closest nonvirtual
parent subsystem. If a virtual subsystem
does not have a nonvirtual parent,
requirement descriptions are located in the
main header file for the model, model.h.

Nonsubsystem blocks In the generated code for the block

The requirement text can include international (non-US-ASCII)
characters.

Off
Suppresses the generation of comments for block requirement
descriptions.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires Embedded Coder and Simulink Verification and
Validation™ licenses when generating code.

6-91

6 Configuration Parameters for Simulink® Models

Command-Line Information

Parameter: ReqsInCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution On

See Also
“How Requirements Information is Included in Generated Code” in the
Simulink Verification and Validation documentation

6-92

Code Generation Pane: Comments

MATLAB function help text
Specify whether to include MATLAB function help text in the function banner.

Settings
Default: off

On
Inserts MATLAB function help text in the function banner.

Off
Inserts MATLAB function help text in the body of the function.

Dependency

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Include comments.

Command-Line Information

Parameter: MATLABFcnDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

6-93

6 Configuration Parameters for Simulink® Models

See Also
“Including MATLAB Function Help Text in the Function Banner”

6-94

Code Generation Pane: Symbols

Code Generation Pane: Symbols
The Code Generation Symbols pane includes the following parameters when
the Simulink Coder product is installed on your system and you select a
GRT-based target.

The Code Generation Symbols pane includes the following parameters when
the Simulink Coder product is installed on your system and you select an
ERT-based target. ERT-based target parameters require an Embedded Coder
license when generating code.

6-95

6 Configuration Parameters for Simulink® Models

6-96

Code Generation Pane: Symbols

In this section...

“Code Generation: Symbols Tab Overview” on page 6-98

“Global variables” on page 6-99

“Global types” on page 6-101

“Field name of global types” on page 6-104

“Subsystem methods” on page 6-106

“Subsystem method arguments” on page 6-109

“Local temporary variables” on page 6-111

“Local block output variables” on page 6-113

“Constant macros” on page 6-115

“Minimum mangle length” on page 6-117

“Maximum identifier length” on page 6-119

“Generate scalar inlined parameter as” on page 6-121

“Signal naming” on page 6-122

“M-function” on page 6-124

“Parameter naming” on page 6-126

“#define naming” on page 6-128

“Use the same reserved names as Simulation Target” on page 6-130

“Reserved names” on page 6-131

6-97

6 Configuration Parameters for Simulink® Models

Code Generation: Symbols Tab Overview
Select the automatically generated identifier naming rules.

See Also

• “Configure Generated Identifiers”

• “Code Generation Pane: Symbols” on page 6-95

6-98

Code Generation Pane: Symbols

Global variables
Customize generated global variable identifiers.

Settings
Default: RN$M

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string
can include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

• If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

• When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-99

6 Configuration Parameters for Simulink® Models

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

• This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrGlobalVar
Type: string
Value: valid combination of tokens
Default: 'RN$M'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combination of tokens

Efficiency No impact

Safety precaution RN$M

See Also

• “Specify Identifier Formats” in the Embedded Coder documentation

• “Name Mangling” in the Embedded Coder documentation

• “Model Referencing Considerations” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-100

Code Generation Pane: Symbols

Global types
Customize generated global type identifiers.

Settings
Default: NR$M

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string
can include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

• If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

• When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-101

6 Configuration Parameters for Simulink® Models

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

• Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier
length setting does not apply to type definitions. If you specify $R, the code
generator includes the model name in the typedef.

• This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrType
Type: string
Value: valid combination of tokens
Default: 'NR$M'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combination of tokens

Efficiency No impact

Safety precaution NR$M

See Also

• “Specify Identifier Formats” in the Embedded Coder documentation

6-102

Code Generation Pane: Symbols

• “Name Mangling” in the Embedded Coder documentation

• “Model Referencing Considerations” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-103

6 Configuration Parameters for Simulink® Models

Field name of global types
Customize generated field names of global types.

Settings
Default: NM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string
can include a combination of the following format tokens.

Token Description

$A Insert data type acronym into signal and work vector
identifiers. For example, i32 for int32_t.

$H Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root_. For blocks at the
subsystem level, the tag is of the form sN_, where N is a
unique system number assigned by the Simulink software.

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

• The Maximum identifier length setting does not apply to type
definitions.

6-104

Code Generation Pane: Symbols

• This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrField
Type: string
Value: valid combination of tokens
Default: 'NM'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combination of tokens

Efficiency No impact

Safety precaution NM

See Also

• “Specify Identifier Formats” in the Embedded Coder documentation

• “Name Mangling” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-105

6 Configuration Parameters for Simulink® Models

Subsystem methods
Customize generated function names for reusable subsystems.

Settings
Default: RNMF

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string
can include a combination of the following format tokens.

Token Description

$F Insert method name (for example, _Update for update
method).

$H Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root_. For blocks at the
subsystem level, the tag is of the form sN_, where N is a
unique system number assigned by the Simulink software.

Empty for Stateflow functions.

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

6-106

Code Generation Pane: Symbols

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

• If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

• When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,
the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

• Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier
length setting does not apply to type definitions. If you specify $R, the code
generator includes the model name in the typedef.

• This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrFcn
Type: string
Value: valid combination of tokens
Default: 'RNMF'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combination of tokens

6-107

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution RNMF

See Also

• “Specify Identifier Formats” in the Embedded Coder documentation

• “Name Mangling” in the Embedded Coder documentation

• “Model Referencing Considerations” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-108

Code Generation Pane: Symbols

Subsystem method arguments
Customize generated function argument names for reusable subsystems.

Settings
Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated argument name. The macro
string can include a combination of the following format tokens.

Token Description

$I Insert an u if the argument is an input. Insert a y if the
argument is an output.

Optional.

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

Recommended to maximize readability of generated code.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

Dependencies
This parameter:

• Appears only for ERT-based targets.

6-109

6 Configuration Parameters for Simulink® Models

• Requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrFcnArg
Type: string
Value: valid combination of tokens
Default: 'rtu_NM' or 'rty_NM'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combinations of tokens

Efficiency No impact

Safety precaution rtu_NM or rty_NM

See Also

• “Code Generation Pane: Symbols” on page 6-95

• “Specify Identifier Formats” in the Embedded Coder documentation

• “Name Mangling” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-110

Code Generation Pane: Symbols

Local temporary variables
Customize generated local temporary variable identifiers.

Settings
Default: NM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string
can include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

• If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

• When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-111

6 Configuration Parameters for Simulink® Models

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

• This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrTmpVar
Type: string
Value: valid combination of tokens
Default: 'NM'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combination of tokens

Efficiency No impact

Safety precaution NM

See Also

• “Specify Identifier Formats” in the Embedded Coder documentation

• “Name Mangling” in the Embedded Coder documentation

• “Model Referencing Considerations” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-112

Code Generation Pane: Symbols

Local block output variables
Customize generated local block output variable identifiers.

Settings
Default: rtb_NM

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string
can include a combination of the following format tokens.

Token Description

$A Insert data type acronym (for example, i32 for long integers)
into signal and work vector identifiers.

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

• This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

6-113

6 Configuration Parameters for Simulink® Models

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrBlkIO
Type: string
Value: valid combination of tokens
Default: 'rtb_NM'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combination of tokens

Efficiency No impact

Safety precaution rtb_NM

See Also

• “Specify Identifier Formats” in the Embedded Coder documentation

• “Name Mangling” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-114

Code Generation Pane: Symbols

Constant macros
Customize generated constant macro identifiers.

Settings
Default: RN$M

Enter a macro string that specifies whether, and in what order, certain
substrings are to be included in the generated identifier. The macro string
can include a combination of the following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming
collisions.

Required.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block
names (for example, Gain1, Gain2...) when your model has many blocks
of the same type.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate. Reserve at least three
characters for a name mangling string.

• If you specify $R, the value you specify for Maximum identifier length
must be large enough to accommodate full expansions of the $R and $M
tokens.

• When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,

6-115

6 Configuration Parameters for Simulink® Models

the code generator preserves the identifier from the referenced model.
Name mangling is performed on the identifier in the higher-level model.

• This option does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CustomSymbolStrMacro
Type: string
Value: valid combination of tokens
Default: 'RN$M'

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid combination of tokens

Efficiency No impact

Safety precaution RN$M

See Also

• “Specify Identifier Formats” in the Embedded Coder documentation

• “Name Mangling” in the Embedded Coder documentation

• “Model Referencing Considerations” in the Embedded Coder documentation

• “Identifier Format Control Parameters Limitations” in the Embedded
Coder documentation

6-116

Code Generation Pane: Symbols

Minimum mangle length
Increase the minimum number of characters used for generating name
mangling strings that help avoid name collisions.

Settings
Default: 1

Specify an integer value that indicates the minimum number of characters
the code generator is to use when generating a name mangling string. The
maximum possible value is 15. The minimum value automatically increases
during code generation as a function of the number of collisions. A larger
value reduces the chance of identifier disturbance when you modify the model.

Tips

• Minimize disturbance to the generated code during development, by
specifying a value of 4. This value is conservative; it allows for over
1.5 million collisions for a particular identifier before the mangle length
increases.

• Set the value to reserve at least three characters for the name mangling
string. The length of the name mangling string increases as the number of
name collisions increases.

Dependency

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: MangleLength
Type: integer
Value: value between 1 and 15
Default: 1

6-117

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability 1

Efficiency No impact

Safety precaution No impact

See Also

• “Name Mangling” in the Embedded Coder documentation

• “Traceability” in the Embedded Coder documentation

• “Minimize Name Mangling” in the Embedded Coder documentation

6-118

Code Generation Pane: Symbols

Maximum identifier length
Specify maximum number of characters in generated function, type definition,
variable names.

Settings
Default: 31
Minimum: 31
Maximum: 256

You can use this parameter to limit the number of characters in function,
type definition, and variable names.

Tips

• Consider increasing identifier length for models having a deep hierarchical
structure.

• When generating code from a model that uses model referencing, the
Maximum identifier length must be large enough to accommodate the
root model name and the name mangling string (if any). A code generation
error occurs if Maximum identifier length is too small.

• This parameter must be the same for both top-level and referenced models.

• When a name conflict occurs between a symbol within the scope of a higher
level model and a symbol within the scope of a referenced model, the symbol
from the referenced model is preserved. Name mangling is performed on
the symbol from the higher level model.

Command-Line Information

Parameter: MaxIdLength
Type: integer
Value: valid value
Default: 31

6-119

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging Valid value

Traceability >30

Efficiency No impact

Safety precaution >30

6-120

Code Generation Pane: Symbols

Generate scalar inlined parameter as
Control expression of scalar inlined parameter values in the generated code.

Settings
Default: Literals

Literals
Generates scalar inlined parameters as numeric constants. This setting
can help with debugging TLC code, as it makes it easy to search for
parameter values in the generated code.

Macros
Generates scalar inlined parameters as variables with #define macros.
This setting makes generated code more readable.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: InlinedPrmAccess
Type: string
Value: 'Literals' | 'Macros'
Default: 'Literals'

Recommended Settings

Application Setting

Debugging No impact

Traceability Macros

Efficiency Literals

Safety precaution No impact

6-121

6 Configuration Parameters for Simulink® Models

Signal naming
Specify rules for naming signals in generated code.

Settings
Default: None

None
Does not change signal names when creating corresponding identifiers
in generated code. Signal identifiers in the generated code match the
signal names that appear in the model.

Force upper case
Uses all uppercase characters when creating identifiers for signal
names in the generated code.

Force lower case
Uses all lowercase characters when creating identifiers for signal names
in the generated code.

Custom M-function
Uses the MATLAB function specified with the M-function parameter
to create identifiers for signal names in the generated code.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• Setting this parameter to Custom M-function enablesM-function.

• This parameter must be the same for top-level and referenced models.

• If you give a value to the Alias parameter of an MPT.Signal or
Simulink.Signal data object, that value overrides the specification of the
Signal naming parameter.

6-122

Code Generation Pane: Symbols

Limitation
This parameter does not affect signal names that are specified by an
embedded signal object created using the Code Generation tab of a Signal
Properties dialog box. See “Custom Storage Classes Using Embedded Signal
Objects” for information about embedded signal objects.

Command-Line Information

Parameter: SignalNamingRule
Type: string
Value: 'None' | 'UpperCase' | 'LowerCase' | 'Custom'
Default: 'None'

Recommended Settings

Application Setting

Debugging No impact

Traceability Force upper case

Efficiency No impact

Safety precaution No impact

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder
documentation

• “Programming Scripts and Functions” in the MATLAB documentation

6-123

6 Configuration Parameters for Simulink® Models

M-function
Specify rule for naming identifiers in generated code.

Settings
Default: ''

Enter the name of a MATLAB language file that contains the naming rule
to be applied to signal, parameter, or #define parameter identifiers in
generated code. Examples of rules you might program in such a MATLAB
function include:

• Remove underscore characters from signal names.

• Add an underscore before uppercase characters in parameter names.

• Make identifiers uppercase in generated code.

Tip
The MATLAB language file must be in the MATLAB path.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Signal naming.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: DefineNamingFcn
Type: string
Value: MATLAB language file
Default: ''

6-124

Code Generation Pane: Symbols

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder
documentation

• “Programming Scripts and Functions” in the MATLAB documentation

6-125

6 Configuration Parameters for Simulink® Models

Parameter naming
Specify rule for naming parameters in generated code.

Settings
Default: None

None
Does not change parameter names when creating corresponding
identifiers in generated code. Parameter identifiers in the generated
code match the parameter names that appear in the model.

Force upper case
Uses all uppercase characters when creating identifiers for parameter
names in the generated code.

Force lower case
Uses all lowercase characters when creating identifiers for parameter
names in the generated code.

Custom M-function
Uses the MATLAB function specified with theM-function parameter
to create identifiers for parameter names in the generated code.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• Setting this parameter to Custom M-function enablesM-function.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: ParamNamingRule
Type: string
Value: 'None' | 'UpperCase' | 'LowerCase' | 'Custom'
Default: 'None'

6-126

Code Generation Pane: Symbols

Recommended Settings

Application Setting

Debugging No impact

Traceability Force upper case

Efficiency No impact

Safety precaution No impact

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder
documentation

• “Programming Scripts and Functions” in the MATLAB documentation

6-127

6 Configuration Parameters for Simulink® Models

#define naming
Specify rule for naming #define parameters (defined with storage class
Define (Custom)) in generated code.

Settings
Default: None

None
Does not change #define parameter names when creating corresponding
identifiers in generated code. Parameter identifiers in the generated
code match the parameter names that appear in the model.

Force upper case
Uses all uppercase characters when creating identifiers for #define
parameter names in the generated code.

Force lower case
Uses all lowercase characters when creating identifiers for #define
parameter names in the generated code.

Custom M-function
Uses the MATLAB function specified with theM-function parameter to
create identifiers for #define parameter names in the generated code.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• Setting this parameter to Custom M-function enablesM-function.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: DefineNamingRule
Type: string
Value: 'None' | 'UpperCase' | 'LowerCase' | 'Custom'
Default: 'None'

6-128

Code Generation Pane: Symbols

Recommended Settings

Application Setting

Debugging No impact

Traceability Force upper case

Efficiency No impact

Safety precaution No impact

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder
documentation

• “Programming Scripts and Functions” in the MATLAB documentation

6-129

6 Configuration Parameters for Simulink® Models

Use the same reserved names as Simulation Target
Specify whether to use the same reserved names as those specified in the
Simulation Target > Symbols pane.

Settings
Default: Off

On
Enables using the same reserved names as those specified in the
Simulation Target > Symbols pane.

Off
Disables using the same reserved names as those specified in the
Simulation Target > Symbols pane.

Command-Line Information

Parameter: UseSimReservedNames
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-130

Code Generation Pane: Symbols

Reserved names
Enter the names of variables or functions in the generated code that match
the names of variables or functions specified in custom code.

Settings
Default: {}

This action changes the names of variables or functions in the generated
code to avoid name conflicts with identifiers in custom code. Reserved names
must be shorter than 256 characters.

Tips

• Do not enter Simulink Coder keywords since these names cannot be
changed in the generated code. For a list of keywords to avoid, see
“Reserved Keywords”.

• Start each reserved name with a letter or an underscore to prevent error
messages.

• Each reserved name must contain only letters, numbers, or underscores.

• Separate the reserved names using commas or spaces.

• You can also specify reserved names by using the command line:

config_param_object.set_param('ReservedNameArray',
{'abc','xyz'})

where config_param_object is the object handle to the model settings in the
Configuration Parameters dialog box.

Command-Line Information

Parameter: ReservedNameArray
Type: string array
Value: reserved names shorter than 256 characters
Default: {}

6-131

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-132

Code Generation Pane: Custom Code

Code Generation Pane: Custom Code
The Code Generation Custom Code pane includes the following parameters
when the Simulink Coder product is installed on your system and you select a
GRT- or ERT-based target.

6-133

6 Configuration Parameters for Simulink® Models

6-134

Code Generation Pane: Custom Code

In this section...

“Code Generation: Custom Code Tab Overview” on page 6-136

“Use the same custom code settings as Simulation Target” on page 6-137

“Use local custom code settings (do not inherit from main model)” on page
6-138

“Source file” on page 6-140

“Header file” on page 6-141

“Initialize function” on page 6-142

“Terminate function” on page 6-143

“Include directories” on page 6-144

“Source files” on page 6-146

“Libraries” on page 6-148

6-135

6 Configuration Parameters for Simulink® Models

Code Generation: Custom Code Tab Overview
Enter custom code to include in generated model files and create a list of
additional folders, source files, and libraries to use when building the model.

Configuration

1 Select the type of information to include from the list on the left side of
the pane.

2 Enter custom code or enter a string to identify a folder, source file, or
library.

3 Click Apply.

See Also

• “Configure Model for External Code Integration”

• “Code Generation Pane: Custom Code” on page 6-133

6-136

Code Generation Pane: Custom Code

Use the same custom code settings as Simulation
Target
Specify whether to use the same custom code settings as those in the
Simulation Target > Custom Code pane.

Settings
Default: Off

On
Enables using the same custom code settings as those in the Simulation
Target > Custom Code pane.

Off
Disables using the same custom code settings as those in the
Simulation Target > Custom Code pane.

Command-Line Information

Parameter: RTWUseSimCustomCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Configure Model for External Code Integration”

6-137

6 Configuration Parameters for Simulink® Models

Use local custom code settings (do not inherit from
main model)
Specify if a library model can use custom code settings that are unique from
the main model.

Settings
Default: Off

On
Enables a library model to use custom code settings that are unique
from the main model.

Off
Disables a library model from using custom code settings that are
unique from the main model.

Dependency
This parameter is available only for library models that contain MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Command-Line Information

Parameter: RTWUseLocalCustomCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-138

Code Generation Pane: Custom Code

See Also
“Configure Model for External Code Integration”

6-139

6 Configuration Parameters for Simulink® Models

Source file
Specify custom code to include near the top of the generated model source file.

Settings
Default:''

The Simulink Coder software places code near the top of the generated
model.c or model.cpp file, outside of any function.

Command-Line Information

Parameter: CustomSourceCode
Type: string
Value: C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Configure Model for External Code Integration”

6-140

Code Generation Pane: Custom Code

Header file
Specify custom code to include near the top of the generated model header file.

Settings
Default:''

The Simulink Coder software places this code near the top of the generated
model.h header file. If you are including a header file, in your custom header
file add #ifndef code. This avoids multiple inclusions. For example, in
rtwtypes.h the following #include guards are added:

#ifndef RTW_HEADER_rtwtypes_h_
#define RTW_HEADER_rtwtypes_h_
...
#endif /* RTW_HEADER_rtwtypes_h_ */

Command-Line Information

Parameter: CustomHeaderCode
Type: string
Value: C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Configure Model for External Code Integration”

6-141

6 Configuration Parameters for Simulink® Models

Initialize function
Specify custom code to include in the generated model initialize function.

Settings
Default: ''

The Simulink Coder software places code inside the model’s initialize function
in the model.c or model.cpp file.

Command-Line Information

Parameter: CustomInitializer
Type: string
Value: C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Configure Model for External Code Integration”

6-142

Code Generation Pane: Custom Code

Terminate function
Specify custom code to include in the generated model terminate function.

Settings
Default: ''

Specify code to appear in the model’s generated terminate function in the
model.c or model.cpp file.

Dependency
A terminate function is generated only if you select the Terminate function
required check box on the Code Generation > Interface pane.

Command-Line Information

Parameter: CustomTerminator
Type: string
Value: C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Configure Model for External Code Integration”

6-143

6 Configuration Parameters for Simulink® Models

Include directories
Specify a list of include folders to add to the include path.

Settings
Default:''

Enter a space-separated list of include folders to add to the include path when
compiling the generated code.

• Specify absolute or relative paths to the folders.

• Relative paths must be relative to the folder containing your model files,
not relative to the build folder.

• The order in which you specify the folders is the order in which they are
searched for header, source, and library files.

Note If you specify a Windows path string containing one or more spaces, you
must enclose the string in double quotes. For example, the second and third
path strings in the Include directories entry below must be double-quoted:

C:\Project "C:\Custom Files" "C:\Library Files"

If you set the equivalent command-line parameter CustomInclude, each
path string containing spaces must be separately double-quoted within the
single-quoted third argument string, for example,

>> set_param('mymodel', 'CustomInclude', ...
'C:\Project "C:\Custom Files" "C:\Library Files"')

Command-Line Information

Parameter: CustomInclude
Type: string
Value: folder path
Default: ''

6-144

Code Generation Pane: Custom Code

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Configure Model for External Code Integration”

6-145

6 Configuration Parameters for Simulink® Models

Source files
Specify a list of additional source files to compile and link with the generated
code.

Settings
Default: ''

Enter a space-separated list of source files to compile and link with the
generated code.

Limitation
This parameter does not support Windows file names that contain embedded
spaces.

Tip
You can specify just the file name if the file is in the current MATLAB folder
or in one of the include folders.

Command-Line Information

Parameter: CustomSource
Type: string
Value: file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-146

Code Generation Pane: Custom Code

See Also
“Configure Model for External Code Integration”

6-147

6 Configuration Parameters for Simulink® Models

Libraries
Specify a list of additional libraries to link with the generated code.

Settings
Default: ''

Enter a space-separated list of static library files to link with the generated
code.

Limitation
This parameter does not support Windows file names that contain embedded
spaces.

Tip
You can specify just the file name if the file is in the current MATLAB folder
or in one of the include folders.

Command-Line Information

Parameter: CustomLibrary
Type: string
Value: library file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-148

Code Generation Pane: Custom Code

See Also
“Configure Model for External Code Integration”

6-149

6 Configuration Parameters for Simulink® Models

Code Generation Pane: Debug
The Code Generation Debug pane includes the following parameters when the
Simulink Coder product is installed on your system and you select a GRT-
or ERT-based target.

6-150

Code Generation Pane: Debug

In this section...

“Code Generation: Debug Tab Overview” on page 6-152

“Verbose build” on page 6-153

“Retain .rtw file” on page 6-154

“Profile TLC” on page 6-155

“Start TLC debugger when generating code” on page 6-156

“Start TLC coverage when generating code” on page 6-158

“Enable TLC assertion” on page 6-159

6-151

6 Configuration Parameters for Simulink® Models

Code Generation: Debug Tab Overview
Select build process and Target Language Compiler (TLC) process options.

See Also

• “Debug”

• “Code Generation Pane: Debug” on page 6-150

6-152

Code Generation Pane: Debug

Verbose build
Display code generation progress.

Settings
Default: on

On
The MATLAB Command Window displays progress information
indicating code generation stages and compiler output during code
generation.

Off
Does not display progress information.

Command-Line Information

Parameter: RTWVerbose
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution On

See Also
“Debug”

6-153

6 Configuration Parameters for Simulink® Models

Retain .rtw file
Specify model.rtw file retention.

Settings
Default: off

On
Retains the model.rtw file in the current build folder. This parameter
is useful if you are modifying the target files and need to look at the file.

Off
Deletes the model.rtw from the build folder at the end of the build
process.

Command-Line Information

Parameter: RetainRTWFile
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Debug”

6-154

Code Generation Pane: Debug

Profile TLC
Profile the execution time of TLC files.

Settings
Default: off

On
The TLC profiler analyzes the performance of TLC code executed during
code generation, and generates an HTML report.

Off
Does not profile the performance.

Command-Line Information

Parameter: ProfileTLC
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Debug”

6-155

6 Configuration Parameters for Simulink® Models

Start TLC debugger when generating code
Specify use of the TLC debugger

Settings
Default: Off

On
The TLC debugger starts during code generation.

Off
Does not start the TLC debugger.

Tips

• You can also start the TLC debugger by entering the -dc argument into the
System target file field.

• To invoke the debugger and run a debugger script, enter the -df filename
argument into the System target file field.

Command-Line Information

Parameter: TLCDebug
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-156

Code Generation Pane: Debug

See Also
“Debug”

6-157

6 Configuration Parameters for Simulink® Models

Start TLC coverage when generating code
Generate the TLC execution report.

Settings
Default: off

On
Generates .log files containing the number of times each line of TLC
code is executed during code generation.

Off
Does not generate a report.

Tip
You can also generate the TLC execution report by entering the -dg argument
into the System target file field.

Command-Line Information

Parameter: TLCCoverage
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Debug”

6-158

Code Generation Pane: Debug

Enable TLC assertion
Produce the TLC stack trace

Settings
Default: off

On
The build process halts if any user-supplied TLC file contains an
%assert directive that evaluates to FALSE.

Off
The build process ignores TLC assertion code.

Command-Line Information

Parameter: TLCAssert
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution On

See Also
“Debug”

6-159

6 Configuration Parameters for Simulink® Models

Code Generation Pane: Interface
The Code Generation Interface pane includes the following parameters
when the Simulink Coder product is installed on your system and you select
a GRT-based target.

The Code Generation Interface pane includes the following parameters when
the Simulink Coder product is installed on your system and you select an
ERT-based target. ERT-based target parameters require an Embedded Coder
license when generating code.

6-160

Code Generation Pane: Interface

6-161

6 Configuration Parameters for Simulink® Models

In this section...

“Code Generation: Interface Tab Overview” on page 6-164

“Code replacement library” on page 6-165

“Custom” on page 6-168

“Shared code placement” on page 6-169

“Support: floating-point numbers” on page 6-171

“Support: non-finite numbers” on page 6-173

“Support: complex numbers” on page 6-175

“Support: absolute time” on page 6-176

“Support: continuous time” on page 6-178

“Support: non-inlined S-functions” on page 6-180

“Support: variable-size signals” on page 6-182

“Multiword type definitions” on page 6-183

“Maximum word length” on page 6-185

“Classic call interface” on page 6-187

“Single output/update function” on page 6-189

“Terminate function required” on page 6-191

“Generate reusable code” on page 6-193

“Reusable code error diagnostic” on page 6-196

“Pass root-level I/O as” on page 6-198

“Block parameter visibility” on page 6-200

“Internal data visibility” on page 6-202

“Block parameter access” on page 6-204

“Internal data access” on page 6-206

“External I/O access” on page 6-208

“Generate destructor” on page 6-210

“Use operator new for referenced model object registration” on page 6-212

6-162

Code Generation Pane: Interface

In this section...

“Generate preprocessor conditionals” on page 6-214

“Suppress error status in real-time model data structure” on page 6-216

“Combine signal/state structures” on page 6-218

“Configure Model Functions” on page 6-221

“Configure C++ Encapsulation Interface” on page 6-222

“MAT-file logging” on page 6-223

“MAT-file variable name modifier” on page 6-226

“Interface” on page 6-228

“Generate C API for: signals” on page 6-231

“Generate C API for: parameters” on page 6-232

“Generate C API for: states” on page 6-233

“Generate C API for: root-level I/O” on page 6-234

“Transport layer” on page 6-235

“MEX-file arguments” on page 6-237

“Static memory allocation” on page 6-239

“Static memory buffer size” on page 6-241

6-163

6 Configuration Parameters for Simulink® Models

Code Generation: Interface Tab Overview
Select the target software environment, output variable name modifier, and
data exchange interface.

See Also

• “Specifying Target Interfaces”

• “Code Generation Pane: Interface” on page 6-160

6-164

Code Generation Pane: Interface

Code replacement library
Specify a target-specific math library for your model.

Settings
Default: C89/C90 (ANSI)

C89/C90 (ANSI)
Generates calls to the ISO®/IEC 9899:1990 C standard math library
for floating-point functions.

C99 (ISO)
Generates calls to the ISO/IEC 9899:1999 C standard math library.

GNU99 (GNU)
Generates calls to the GNU® gcc math library, which provides C99
extensions as defined by compiler option -std=gnu99.

C++ (ISO)
Generates calls to the ISO/IEC 14882:2003 C++ standard math library.

Intel IPP (ANSI)
Generates calls to the Intel Performance Primitives (IPP) ANSI® library.

Intel IPP (ISO)
Generates calls to the Intel Performance Primitives (IPP) ISO library.

Intel IPP/SSE (GNU)
Generates calls to the GNU libraries for Intel Performance Primitives
(IPP) and Streaming SIMD Extensions (SSE).

6-165

6 Configuration Parameters for Simulink® Models

Note

• Additional values might be listed for licensed target products, for Embedded
Targets and Desktop Targets, or if you have created and registered code
replacement libraries using the Embedded Coder product.

• The list of Code replacement library values is filtered based on
the Device vendor value selected for your model on the Hardware
Implementation pane. If you set Device vendor to Generic, the list of
Code replacement library values shows all registered CRLs.

Tip
Before setting this parameter, verify that your compiler supports the library
you want to use. If you select a parameter value that your compiler does not
support, compiler errors can occur.

Dependencies
The C++ (ISO)math library is available for use only if you select a compatible
value for the Language parameter on the Code Generation pane of the
Configuration Parameters dialog box:

• For the GRT target, select C++.

• For an ERT-based target, select C++ or C++ (Encapsulated).

Using an ERT-based target and the C++ (Encapsulated) value for code
generation requires an Embedded Coder license.

Command-Line Information

Parameter: CodeReplacementLibrary
Type: string
Value: 'ANSI_C' | 'C99 (ISO)' | 'GNU99 (GNU)' | 'C++ (ISO)'
Default: 'ANSI_C'

6-166

Code Generation Pane: Interface

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Valid library

Safety precaution No impact

See Also
“Specifying Target Interfaces”

6-167

6 Configuration Parameters for Simulink® Models

Custom
Click the Custom button to open the Code Replacement Tool. With this tool,
you can you create and manage the code replacement tables that make up a
code replacement library (CRL).

Dependencies

• This button appears only for ERT-based targets.

• This button requires an Embedded Coder license when generating code.

See Also

• “Manage CRTs with the Code Replacement Tool”

• “Code Replacement”

6-168

Code Generation Pane: Interface

Shared code placement
Specify the location for generating utility functions, exported data type
definitions, and declarations of exported data with custom storage class.

Settings
Default: Auto

Auto
Operates as follows:

• When the model contains Model blocks, places utility code within the
slprj/target/_sharedutils folder.

• When the model does not contain Model blocks, places utility code in
the build folder (generally, in model.c or model.cpp).

Shared location
Directs code for utilities to be placed within the slprj folder in your
working folder.

Command-Line Information

Parameter: UtilityFuncGeneration
Type: string
Value: 'Auto' | 'Shared location'
Default: 'Auto'

Recommended Settings

Application Setting

Debugging Shared location (GRT)
No impact (ERT)

Traceability Shared location (GRT)
No impact (ERT)

Efficiency No impact (execution, RAM)
Shared location (ROM)

Safety precaution No impact

6-169

6 Configuration Parameters for Simulink® Models

See Also

• “Specifying Target Interfaces”

• “Shared Utility Code”

6-170

Code Generation Pane: Interface

Support: floating-point numbers
Specify whether to generate floating-point data and operations.

Settings
Default: On (GUI), 'off' (command-line)

On
Generates floating-point data and operations.

Off
Generates pure integer code. If you clear this option, an error occurs if
the code generator encounters floating-point data or expressions. The
error message reports offending blocks and parameters.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• Selecting this parameter enables Support: non-finite numbers and
clearing this parameter disables Support: non-finite numbers.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: PurelyIntegerCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Note The command-line values are reverse of the settings values. Therefore,
'on' in the command line corresponds to the description of “Off” in the
settings section, and 'off' in the command line corresponds to the description
of “On” in the settings section.

6-171

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off (GUI), 'on' (command-line) — for
integer only

Safety precaution No impact

6-172

Code Generation Pane: Interface

Support: non-finite numbers
Specify whether to generate nonfinite data and operations on nonfinite data.

Settings
Default: on

On
Generates nonfinite data (for example, NaN and Inf) and related
operations.

Off
Does not generate nonfinite data and operations. If you clear this
option, an error occurs if the code generator encounters nonfinite
data or expressions. The error message reports offending blocks and
parameters.

Note Code generation is optimized with the assumption that there
is no nonfinite data. However, if your application produces nonfinite
numbers through signal data or MATLAB code, the behavior of the
generated code might be inconsistent with simulation results when
processing nonfinite data.

Dependencies

• For ERT-based targets, this parameter is enabled by Support:
floating-point numbers.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: SupportNonFinite
Type: string
Value: 'on' | 'off'
Default: 'on'

6-173

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off (execution, ROM), No impact (RAM)

Safety precaution Off

6-174

Code Generation Pane: Interface

Support: complex numbers
Specify whether to generate complex data and operations.

Settings
Default: on

On
Generates complex numbers and related operations.

Off
Does not generate complex data and related operations. If you clear
this option, an error occurs if the code generator encounters complex
data or expressions. The error message reports offending blocks and
parameters.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: SupportComplex
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off (for real only)

Safety precaution No impact

6-175

6 Configuration Parameters for Simulink® Models

Support: absolute time
Specify whether to generate and maintain integer counters for absolute and
elapsed time values.

Settings
Default: on

On
Generates and maintains integer counters for blocks that require
absolute or elapsed time values. Absolute time is the time from the
start of program execution to the present time. An example of elapsed
time is time elapsed between two trigger events.

If you select this option and the model does not include blocks that use
time values, the target does not generate the counters.

Off
Does not generate integer counters to represent absolute or elapsed
time values. If you do not select this option and the model includes
blocks that require absolute or elapsed time values, an error occurs
during code generation.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• You must select this parameter if your model includes blocks that require
absolute or elapsed time values.

Command-Line Information

Parameter: SupportAbsoluteTime
Type: string
Value: 'on' | 'off'
Default: 'on'

6-176

Code Generation Pane: Interface

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off

Safety precaution Off

See Also
“Timers”

6-177

6 Configuration Parameters for Simulink® Models

Support: continuous time
Specify whether to generate code for blocks that use continuous time.

Settings
Default: off

On
Generates code for blocks that use continuous time.

Off
Does not generate code for blocks that use continuous time. If you do
not select this option and the model includes blocks that use continuous
time, an error occurs during code generation.

Dependencies

• This option only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This option must be on if your model includes blocks that require absolute
or elapsed time values.

• This option must be off when generating an S-function wrapper for an
ERT-based target; the code generator does not support continuous time for
this target scenario.

• If you have customized ert_main.c or .cpp to read model outputs after
each base-rate model step, be aware that selecting the options Support:
continuous time and Single output/update function together may
cause output values read from ert_main for a continuous output port to
differ from the corresponding output values in the model’s logged data.
This is because, while logged data is a snapshot of output at major time
steps, output read from ert_main after the base-rate model step potentially
reflects intervening minor time steps. To eliminate the discrepancy, either
separate the generated output and update functions (clear the Single
output/update function option) or place a Zero-Order Hold block before
the continuous output port.

6-178

Code Generation Pane: Interface

Command-Line Information

Parameter: SupportContinuousTime
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off (execution, ROM), No impact (RAM)

Safety precaution Off

See Also

• “Use Discrete and Continuous Time”

• “Generate S-Function Wrappers”

6-179

6 Configuration Parameters for Simulink® Models

Support: non-inlined S-functions
Specify whether to generate code for noninlined S-functions.

Settings
Default: Off

On
Generates code for noninlined S-functions.

Off
Does not generate code for noninlined S-functions. If this parameter
is off and the model includes a noninlined S-function, an error occurs
during the build process.

Tip

• Inlining S-functions is highly advantageous in production code generation,
for example, for implementing device drivers. In such cases, clear this
option to enforce use of inlined S-functions for code generation.

• Noninlined S-functions require additional memory and computation
resources, and can result in significant performance issues. Consider using
an inlined S-function when efficiency is a concern.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• Selecting this parameter also selects Support: floating-point numbers
and Support: non-finite numbers. If you clear Support: floating-point
numbers or Support: non-finite numbers, a warning is displayed
during code generation because these parameters are required by the
S-function interface.

6-180

Code Generation Pane: Interface

Command-Line Information

Parameter: SupportNonInlinedSFcns
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off

Safety precaution Off

See Also

• “Generate S-Function Wrappers”

• “Insert S-Function Code”

6-181

6 Configuration Parameters for Simulink® Models

Support: variable-size signals
Specify whether to generate code for models that use variable-size signals.

Settings
Default: Off

On
Generates code for models that use variable-size signals.

Off
Does not generate code for models that use variable-size signals. If
this parameter is off and the model uses variable-size signals, an error
occurs during code generation.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: SupportVariableSizeSignals
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off

Safety precaution Off

6-182

Code Generation Pane: Interface

Multiword type definitions
Specify whether to use system-defined or user-defined type definitions for
multiword data types in generated code.

Settings
Default: System defined

System defined
Use the default system type definitions for multiword data types in
generated code. During code generation, if multiword usage is detected,
multiword types will be generated into the file rtwtypes.h.

User defined
Allows you to control how multiword type definitions are handled
during the code generation process. Selecting this value enables the
associated parameter Maximum word length, which allows you to
specify a maximum word length, in bits, for which the code generation
process will generate multiword types into the file rtwtypes.h. The
default maximum word length is 256. If you select 0, multiword types
are not generated into the file rtwtypes.h, which provides you complete
control over type definitions for multiword data types in generated code.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• Selecting the value User defined for this parameter enables the associated
parameter Maximum word length.

Command-Line Information

Parameter: ERTMultiwordTypeDef
Type: string
Value: 'System defined' | 'User defined'
Default: 'System defined'

6-183

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Specifying User defined and a low value
for Maximum word length reduces the
size of the generated file rtwtypes.h

Safety precaution Use default

6-184

Code Generation Pane: Interface

Maximum word length
Specify a maximum word length, in bits, for which the code generation process
will generate system-defined multiword types

Settings
Default: 256

Specify a maximum word length, in bits, for which the code generation
process will generate multiword types into the file rtwtypes.h. All multiword
types up to and including this number of bits will be generated. If you
select 0, multiword types are not generated into the file rtwtypes.h, which
provides you complete control over type definitions for multiword data types
in generated code.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by selecting the value User defined for the
parameter Multiword type definitions.

Command-Line Information

Parameter: ERTMultiwordLength
Type: integer
Value: valid quantity of bits representing a word size
Default: 256

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

6-185

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency Smaller values reduce the size of the
generated file rtwtypes.h

Safety precaution Use default

6-186

Code Generation Pane: Interface

Classic call interface
Specify whether to generate model function calls compatible with the main
program module of the GRT target in models created before R2012a.

Settings
Default: off (except on for GRT models created before R2012a)

On
Generates model function calls that are compatible with the main
program module of the GRT target (grt_main.c or grt_main.cpp) in
models created before R2012a.

This option provides a quick way to use code generated in the current
release with a GRT-based custom target that has a main program
module based on pre-R2012a grt_main.c or grt_main.cpp.

Off
Disables the classic call interface.

Tips
The following are unsupported:

• Data type replacement

• Nonvirtual subsystem option Function with separate data

Dependencies

• For an ERT target, setting Language to C++ (Encapsulated) on the
Code generation pane disables this parameter.

• For an ERT target, selecting this parameter also selects the required option
Support: floating-point numbers. If you subsequently clear Support:
floating-point numbers, an error is displayed during code generation.

• For an ERT target, selecting this parameter disables the incompatible
option Single output/update function. Clearing this parameter enables
(but does not select) Single output/update function.

6-187

6 Configuration Parameters for Simulink® Models

Command-Line Information

Parameter: GRTInterface
Type: string
Value: 'on' | 'off'
Default: 'off' (except 'on' for GRT models created before R2012a)

Recommended Settings

Application Setting

Debugging No impact

Traceability Off

Efficiency Off (execution, ROM), No impact (RAM)

Safety precaution Off

See Also
“Use Discrete and Continuous Time”

6-188

Code Generation Pane: Interface

Single output/update function
Specify whether to generate the model_step function.

Settings
Default: on

On
Generates the model_step function for a model. This function contains
the output and update function code for the blocks in the model and is
called by rt_OneStep to execute processing for one clock period of the
model at interrupt level.

Off
Does not combine output and update function code into a single
function, and instead generates the code in separate model_output and
model_update functions.

Tips
Errors or unexpected behavior can occur if a Model block is part of a cycle, the
Model block is a direct feedthrough block, and an algebraic loop results. See
“Model Blocks and Direct Feedthrough” for details.

Simulink Coder ignores this parameter for a referenced model if any of the
following conditions apply to that model:

• Is multi-rate

• Has a continuous sample time

• Is logging states (using the States or Final states parameters in the
Configuration Parameters > Data Import/Export pane

Dependencies

• This option only appears for ERT-based targets with Language set to C
or C++ (not C++ (Encapsulated)).

• This parameter requires an Embedded Coder license when generating code.

6-189

6 Configuration Parameters for Simulink® Models

• This option and Classic call interface are mutually incompatible and
cannot both be selected through the GUI. Selecting Classic call interface
disables this option and clearing Classic call interface enables this
option.

• When you use this option, you must clear the optionMinimize algebraic
loop occurrences on the Model Referencing pane.

• If you have customized ert_main.c or .cpp to read model outputs after
each base-rate model step, be aware that selecting the options Support:
continuous time and Single output/update function together may
cause output values read from ert_main for a continuous output port to
differ from the corresponding output values in the model’s logged data.
This is because, while logged data is a snapshot of output at major time
steps, output read from ert_main after the base-rate model step potentially
reflects intervening minor time steps. To eliminate the discrepancy, either
separate the generated output and update functions (clear the Single
output/update function option) or place a Zero-Order Hold block before
the continuous output port.

Command-Line Information

Parameter: CombineOutputUpdateFcns
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency On

Safety precaution On

See Also
“rt_OneStep and Scheduling Considerations”

6-190

Code Generation Pane: Interface

Terminate function required
Specify whether to generate the model_terminate function.

Settings
Default: on

On
Generates a model_terminate function. This function contains model
termination code and should be called as part of system shutdown.

Off
Does not generate a model_terminate function. Suppresses the
generation of this function if you designed your application to run
indefinitely and does not require a terminate function.

Dependencies

• This parameter only appears for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: IncludeMdlTerminateFcn
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off (execution, ROM), No impact (RAM)

Safety precaution Off

6-191

6 Configuration Parameters for Simulink® Models

See Also
model_terminate

6-192

Code Generation Pane: Interface

Generate reusable code
Specify whether to generate reusable, reentrant code.

Settings
Default: off

On
Generates reusable, multi-instance code that is reentrant. The code
generator passes model data structures (root-level inputs and outputs,
block states, parameters, and external outputs) in, by reference, as
arguments to model_step and the other model entry point functions.
The data structures are also exported with model.h. For efficiency, the
code generator passes in only data structures that are used. Therefore,
when you select this option, the argument lists generated for the entry
point functions vary according to model requirements.

Off
Does not generate reusable code. Model data structures are statically
allocated and accessed by model entry point functions directly in the
model code.

Tips

• Entry points are exported with model.h. To call the entry-point functions
from hand-written code, add an #include model.h directive to the code. If
this option is selected, you must examine the generated code to determine
the calling interface required for these functions.

• When this option is selected, the code generator generates a pointer to the
real-time model object (model_M).

• In some cases, when this option is selected, the code generator might
generate code that compiles but is not reentrant. For example, if any
signal, DWork structure, or parameter data has a storage class other than
Auto, global data structures are generated.

6-193

6 Configuration Parameters for Simulink® Models

Dependencies

• This parameter only appears for ERT-based targets with Language set to
C or C++ (not C++ (Encapsulated)).

• This parameter requires an Embedded Coder license when generating code.

• This parameter enables Reusable code error diagnostic and Pass
root-level I/O as.

• You must clear this option if you are using:

- The static ert_main.c module, rather than generating a main program

- The model_step function prototype control capability

- The subsystem parameter Function with separate data

- A subsystem that

• Has multiple ports that share the same source

• Has a port that is used by multiple instances of the subsystem and
has different sample times, data types, complexity, frame status, or
dimensions across the instances

• Has output marked as a global signal

• For each instance contains identical blocks with different names or
parameter settings

• This parameter has no effect on code generated for function-call subsystems.

Command-Line Information

Parameter: MultiInstanceERTCode
Type: string
Value: 'on' | 'off'
Default: 'off'

6-194

Code Generation Pane: Interface

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (for single instance)

Safety precaution No impact

See Also

• “Entry Point Functions and Scheduling”

• “Code Generation of Subsystems”

• “Code Reuse Limitations for Subsystems”

• “Determine Why Subsystem Code Is Not Reused”

• “S-Functions That Support Code Reuse”

• “Static Main Program Module”

• “Function Prototype Control”

• “Atomic Subsystem Code”

• “Export Function-Call Subsystems”

• model_step

6-195

6 Configuration Parameters for Simulink® Models

Reusable code error diagnostic
Select the severity level for diagnostics displayed when a model violates
requirements for generating reusable code.

Settings
Default: Error

None
Proceed with build without displaying a diagnostic message.

Warning
Proceed with build after displaying a warning message.

Error
Abort build after displaying an error message.

Under certain conditions, the Embedded Coder software might

• Generate code that compiles but is not reentrant. For example, if signal,
DWork structure, or parameter data has a storage class other than Auto,
global data structures are generated.

• Be unable to generate valid and compilable code. For example, if the model
contains an S-function that is not code-reuse compliant or a subsystem
triggered by a wide function-call trigger, the coder generates invalid code,
displays an error message, and terminates the build.

Dependencies

• This parameter only appears for ERT-based targets with Language set to
C or C++ (not C++ (Encapsulated)).

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Generate reusable code.

6-196

Code Generation Pane: Interface

Command-Line Information

Parameter: MultiInstanceErrorCode
Type: string
Value: 'None' | 'Warning' | 'Error'
Default: 'Error'

Recommended Settings

Application Setting

Debugging Warning or Error

Traceability No impact

Efficiency None

Safety precaution No impact

See Also

• “Entry Point Functions and Scheduling”

• “Code Generation of Subsystems”

• “Code Reuse Limitations for Subsystems”

• “Determine Why Subsystem Code Is Not Reused”

• “Atomic Subsystem Code”

6-197

6 Configuration Parameters for Simulink® Models

Pass root-level I/O as
Control how root-level model input and output are passed to the model_step
function.

Settings
Default: Individual arguments

Individual arguments
Passes each root-level model input and output value to model_step as a
separate argument.

Structure reference
Packs root-level model input into a struct and passes struct to
model_step as an argument. Similarly, packs root-level model output
into a second struct and passes it to model_step.

Dependencies

• This parameter only appears for ERT-based targets with Language set to
C or C++ (not C++ (Encapsulated)).

• This parameter requires an Embedded Coder license when generating code.

• This parameter is enabled by Generate reusable code.

Command-Line Information

Parameter: RootIOFormat
Type: string
Value: 'Individual arguments' | 'Structure reference'
Default: 'Individual arguments'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

6-198

Code Generation Pane: Interface

Application Setting

Efficiency No impact

Safety precaution No impact

See Also

• “Entry Point Functions and Scheduling”

• “Code Generation of Subsystems”

• “Atomic Subsystem Code”

• model_step

6-199

6 Configuration Parameters for Simulink® Models

Block parameter visibility
Specify whether to generate the block parameter structure as a public,
private, or protected data member of the C++ model class.

Settings
Default: private

public
Generates the block parameter structure as a public data member of
the C++ model class.

private
Generates the block parameter structure as a private data member of
the C++ model class.

protected
Generates the block parameter structure as a protected data member
of the C++ model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to
C++ (Encapsulated).

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: ParameterMemberVisibility
Type: string
Value: 'public' | 'private' | 'protected'
Default: 'private'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

6-200

Code Generation Pane: Interface

Application Setting

Efficiency No impact

Safety precaution protected

See Also
“Configure Code Interface Options”

6-201

6 Configuration Parameters for Simulink® Models

Internal data visibility
Specify whether to generate internal data structures such as Block I/O,
DWork vectors, Run-time model, Zero-crossings, and continuous states as
public, private, or protected data members of the C++ model class.

Settings
Default: private

public
Generates internal data structures as public data members of the C++
model class.

private
Generates internal data structures as private data members of the
C++ model class.

protected
Generates internal data structures as protected data members of the
C++ model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to
C++ (Encapsulated).

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: InternalMemberVisibility
Type: string
Value: 'public' | 'private' | 'protected'
Default: 'private'

6-202

Code Generation Pane: Interface

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution protected

See Also
“Configure Code Interface Options”

6-203

6 Configuration Parameters for Simulink® Models

Block parameter access
Specify whether to generate access methods for block parameters for the
C++ model class.

Settings
Default: None

None
Does not generate access methods for block parameters for the C++
model class.

Method
Generates noninlined access methods for block parameters for the C++
model class.

Inlined method
Generates inlined access methods for block parameters for the C++
model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to
C++ (Encapsulated).

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: GenerateParameterAccessMethods
Type: string
Value: 'None' | 'Method' | 'Inlined method'
Default: 'None'

Recommended Settings

Application Setting

Debugging Inlined method

Traceability Inlined method

6-204

Code Generation Pane: Interface

Application Setting

Efficiency Inlined method

Safety precaution None

See Also
“Configure Code Interface Options”

6-205

6 Configuration Parameters for Simulink® Models

Internal data access
Specify whether to generate access methods for internal data structures, such
as Block I/O, DWork vectors, Run-time model, Zero-crossings, and continuous
states, for the C++ model class.

Settings
Default: None

None
Does not generate access methods for internal data structures for the
C++ model class.

Method
Generates noninlined access methods for internal data structures for
the C++ model class.

Inlined method
Generates inlined access methods for internal data structures for the
C++ model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to
C++ (Encapsulated).

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: GenerateInternalMemberAccessMethods
Type: string
Value: 'None' | 'Method' | 'Inlined method'
Default: 'None'

6-206

Code Generation Pane: Interface

Recommended Settings

Application Setting

Debugging Inlined method

Traceability Inlined method

Efficiency Inlined method

Safety precaution None

See Also
“Configure Code Interface Options”

6-207

6 Configuration Parameters for Simulink® Models

External I/O access
Specify whether to generate access methods for root-level I/O signals for the
C++ model class.

Note This parameter affects generated code only if you are using the default
(void-void style) step method for your model class; not if you are explicitly
passing arguments for root-level I/O signals using an I/O arguments style
step method. For more information, see “Passing No Arguments (void-void)”
and “Passing I/O Arguments”.

Settings
Default: None

None
Does not generate access methods for root-level I/O signals for the C++
model class.

Method
Generates noninlined access methods for root-level I/O signals for the
C++ model class. The software generates set and get methods for each
signal.

Inlined method
Generates inlined access methods for root-level I/O signals for the C++
model class. The software generates set and get methods for each signal.

Structure-based method
Generates noninlined, structure-based access methods for root-level I/O
signals for the C++ model class. The software generates one set method,
taking the address of the external input structure as an argument,
and for external outputs (if applicable), one get method, returning the
reference to the external output structure.

Inlined structure-based method
Generates inlined, structure-based access methods for root-level I/O
signals for the C++ model class. The software generates one set method,
taking the address of the external input structure as an argument,
and for external outputs (if applicable), one get method, returning the
reference to the external output structure.

6-208

Code Generation Pane: Interface

Dependencies

• This parameter appears only for ERT-based targets with Language set to
C++ (Encapsulated).

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: GenerateExternalIOAccessMethods
Type: string
Value: 'None' | 'Method' | 'Inlined method' | 'Structure-based
method' | 'Inlined structure-based method'
Default: 'None'

Recommended Settings

Application Setting

Debugging Inlined method

Traceability Inlined method

Efficiency Inlined method

Safety precaution None

See Also
“Configure Code Interface Options”

6-209

6 Configuration Parameters for Simulink® Models

Generate destructor
Specify whether to generate a destructor for the C++ model class.

Settings
Default: on

On
Generates a destructor for the C++ model class.

Off
Does not generate a destructor for the C++ model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to
C++ (Encapsulated).

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: GenerateDestructor
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Off

6-210

Code Generation Pane: Interface

See Also
“Configure Code Interface Options”

6-211

6 Configuration Parameters for Simulink® Models

Use operator new for referenced model object
registration
Specify whether generated code uses the operator new, during model object
registration, to instantiate objects for referenced models configured with a
C++ encapsulation interface.

Settings
Default: off

On
Generates code that uses dynamic memory allocation to instantiate
objects for referenced models configured with a C++ encapsulation
interface. Specifically, during instantiation of an object for the top
model in a model reference hierarchy, the generated code uses new to
instantiate objects for referenced models.

Selecting this option frees a parent model from having to maintain
information about submodels beyond its direct children.

Note If you select this option, be aware that a bad_alloc exception
might be thrown, per the C++ standard, if an out-of-memory error
occurs during the use of new. You must provide code to catch and process
the bad_alloc exception in case an out-of-memory error occurs for a new
call during construction of a top model object

Off
Does not generate code that uses new to instantiate referenced model
objects.

Clearing this option means that a parent model maintains information
about all of its submodels, including its direct and indirect children.

Dependencies

• This parameter appears only for ERT-based targets with Language set to
C++ (Encapsulated).

6-212

Code Generation Pane: Interface

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: UseOperatorNewForModelRefRegistration
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On

Safety precaution Off

See Also
“Configure Code Interface Options”

6-213

6 Configuration Parameters for Simulink® Models

Generate preprocessor conditionals
Generate preprocessor conditional directives globally for a model or locally for
each Model block with variant models.

Settings
Default: Use local settings

Use local settings
Generates preprocessor conditional directives based on the value of
the Generate preprocessor conditionals parameter on the Model
block parameters dialog. If you select the Generate preprocessor
conditionals parameter in the Model block parameters dialog, the
generated code contains preprocessor conditional directives for all
variant models of that Model block. If you do not select this parameter
for a Model block, code is generated for the active variant model.

Enable all
Generates preprocessor conditional directives for all variant models of
the Model blocks. Disables the Generate preprocessor conditionals
parameter in the Model block parameters dialog.

Disable all
Only generates code for the active variant model of the Model block.
Disables the Generate preprocessor conditionals parameter in the
Model block parameters dialog for all Model blocks.

Tips
For generating preprocessor directives we recommend the following settings:

• Select the “Inline parameters” parameter on the Optimization > Signals
and Parameters pane of the Configuration Parameters dialog box.

• Deselect the “Ignore custom storage classes” on page 6-21 parameter on the
Code Generation pane of the Configuration Parameters dialog box.

Dependencies

• This parameter only appears for ERT-based targets.

6-214

Code Generation Pane: Interface

• This parameter requires an Embedded Coder license when generating code.

• Setting this parameter to Use local settings enables Generate
preprocessor conditionals parameter on the Model block parameters
dialog.

• Setting this parameter to Enable all or Disable all disables the
Generate preprocessor conditionals check box on the Model block
parameters dialog.

• Setting this parameter to Enable all sets the Selected variant control
on the Model block parameter dialog to (derive from conditions).

Command-Line Information

Parameter: GeneratePreprocessorConditionals
Type: string
Value: 'Use local settings' | 'Enable all' | 'Disable all'
Default: 'Use local settings'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Working with Variant Systems”

• “Variant Systems”

6-215

6 Configuration Parameters for Simulink® Models

Suppress error status in real-time model data
structure
Specify whether to log or monitor error status.

Settings
Default: off

On
Omits the error status field from the generated real-time model data
structure rtModel. This option reduces memory usage.

Be aware that selecting this option can cause the code generator to omit
the rtModel data structure from generated code.

Off
Includes an error status field in the generated real-time model data
structure rtModel. You can use available macros to monitor the field for
error message data or set it with error message data.

Dependencies

• This parameter appears only for ERT-based targets.

• This parameter requires an Embedded Coder license when generating code.

• This parameter is cleared if you select the incompatible option MAT-file
logging. If you subsequently select this parameter, code generation
displays an error.

• Selecting this parameter clears Support: continuous time.

• If your application contains multiple integrated models, the setting of
this option must be the same for all of the models to avoid unexpected
application behavior. For example, if you select the option for one model
but not another, an error status might not get registered by the integrated
application.

6-216

Code Generation Pane: Interface

Command-Line Information

Parameter: SuppressErrorStatus
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off

Traceability No impact

Efficiency On

Safety precaution On

See Also
“Using the Real-Time Model Data Structure”

6-217

6 Configuration Parameters for Simulink® Models

Combine signal/state structures
Specify whether to combine global block signals and global state data into one
data structure in the generated code

Settings
Default: Off

On
Combine global block signal data (block I/O) and global state data
(DWork vectors) into one data structure in the generated code.

Off
Store global block signals and global states in separate data structures,
block I/O and DWork vectors, in the generated code.

Tips
The benefits to setting this parameter to On are:

• Enables tighter memory representation through fewer bitfields, which
reduces RAM usage

• Enables better alignment of data structure elements, which reduces RAM
usage

• Reduces the number of arguments to reusable subsystem and model
reference block functions, which reduces stack usage

• Better readable data structures with more consistent element sorting

Example. For a model that generates the following code:

/* Block signals (auto storage) */
typedef struct {

struct {
uint_T LogicalOperator:1;
uint_T UnitDelay1:1;

} bitsForTID0;
} BlockIO;
/* Block states (auto storage) */
typedef struct {

6-218

Code Generation Pane: Interface

struct {
uint_T UnitDelay_DSTATE:1
uint_T UnitDelay1_DSTATE:1

} bitsForTID0;
} D_Work;

If you select Combine signal/state structures, the generated code now
looks like this:

/* Block signals and states (auto storage)
for system */

typedef struct {
struct {

uint_T LogicalOperator:1;
uint_T UnitDelay1:1;
uint_T UnitDelay_DSTATE:1;
uint_T UnitDelay1_DSTATE:1;

} bitsForTID0;
} D_Work;

Dependencies
This parameter:

• Appears only for ERT-based targets.

• Requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: CombineSignalStateStructs
Type: string
Value: 'on' | 'off'
Default: off

6-219

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On

Safety precaution No impact

See Also

• “Global Block I/O Structure”

• “State Storage”

6-220

Code Generation Pane: Interface

Configure Model Functions
Click the Configure Model Functions button to open the Model Interface
dialog box. In this dialog box, you can specify whether the code generator
uses default model_initialize and model_step function prototypes or
model-specific C prototypes. Based on your selection, you can preview and
modify the function prototypes.

Dependencies

• This button appears only for ERT-based targets with Language set to C
or C++ (not C++ (Encapsulated)).

• This button requires an Embedded Coder license when generating code.

• This button is active only if your model uses an attached configuration set.
If your model uses a referenced configuration set, the button is greyed
out. If you want to configure a model-specific step function prototype for a
referenced configuration set, use the MATLAB function prototype control
functions described in “Configure Function Prototypes Programmatically”.

See Also

• “Function Prototype Control”

• model_initialize

• model_step

• “Launch the Model Interface Dialog Boxes”

6-221

6 Configuration Parameters for Simulink® Models

Configure C++ Encapsulation Interface
Click the Configure C++ Encapsulation Interface button to open the
Configure C++ encapsulation interface dialog box. In this dialog box, you
can customize the C++ class interface for your model code. Based on your
selections, you can preview and modify the model-specific C++ encapsulation
interface.

Dependencies

• This button appears only for ERT-based targets with Language set to
C++ (Encapsulated).

• This button requires an Embedded Coder license when generating code.

• This button is active only if your model uses an attached configuration set.
If your model uses a referenced configuration set, the button is greyed out.
If you want to configure a model-specific C++ encapsulation interface for a
referenced configuration set, use the MATLAB C++ encapsulation interface
control functions described in “Configure C++ Encapsulation Interfaces
Programmatically”.

See Also

• “C++ Encapsulation Interface Control”

• model_step

• “Configure Step Method for Your Model Class”

6-222

Code Generation Pane: Interface

MAT-file logging
Specify whether to enable MAT-file logging.

Settings
Default: on for the GRT target, off for ERT-based targets

On
Enables MAT-file logging. When you select this option, the generated
code saves to MAT-files simulation data specified in any of the following
ways:

• Configuration Parameters > Data Import/Export, Save to
workspace subpane (see “Data Import/Export Pane”)

• To Workspace blocks

• Scope blocks with the Save data to workspace parameter enabled

In simulation, this data would be written to the MATLAB workspace,
as described in “Export Simulation Data” and “Configure Signal Data
for Logging”. Setting MAT-file logging redirects the data to a MAT-file
instead. The file is named model.mat, where model is the name of your
model.

Off
Disables MAT-file logging. Clearing this option has the following
benefits:

• Eliminates overhead associated with supporting a file system, which
typically is not a requirement for embedded applications

• Eliminates extra code and memory usage required to initialize,
update, and clean up logging variables

• Under certain conditions, eliminates code and storage associated
with root output ports

• Omits the comparison between the current time and stop time in
the model_step, allowing the generated program to run indefinitely,
regardless of the stop time setting

6-223

6 Configuration Parameters for Simulink® Models

Dependencies

• For the GRT target, selecting this parameter also selects the required
option Support non-finite numbers. If you subsequently clear Support
non-finite numbers, an error is displayed during code generation.

• For ERT-based targets, selecting this parameter also selects the required
options Support: floating-point numbers, Support: non-finite
numbers, and Terminate function required. If you subsequently clear
Support: floating-point numbers, Support: non-finite numbers,
or Terminate function required, an error is displayed during code
generation.

• For ERT-based targets, selecting this parameter clears the incompatible
option Suppress error status in real-time model data structure. If
you subsequently select Suppress error status in real-time model data
structure, an error is displayed during code generation.

• Selecting this parameter enables MAT-file variable name modifier.

• For ERT-based targets, clear this option if you are using exported function
calls.

Limitation
MAT-file logging does not work in a referenced model, and code is not
generated to implement it.

In the context of the Embedded Coder product, MAT-file logging does not
support the following IDEs: Analog Devices VisualDSP++, Green Hills
MULTI, IAR Embedded Workbench, Texas Instruments Code Composer
Studio, Wind River DIAB/GCC.

Command-Line Information

Parameter: MatFileLogging
Type: string
Value: 'on' | 'off'
Default: 'on' for the GRT target, 'off' for ERT-based targets

6-224

Code Generation Pane: Interface

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency Off

Safety precaution Off

See Also

• “Logging”

• “Log Data for Analysis”

• “Use Virtualized Output Ports Optimization”

6-225

6 Configuration Parameters for Simulink® Models

MAT-file variable name modifier
Select the string to add to MAT-file variable names.

Settings
Default: rt_

rt_
Adds a prefix string.

_rt
Adds a suffix string.

none
Does not add a string.

Dependency
If you have an Embedded Coder license, for the GRT target or ERT-based
targets, this parameter is enabled by MAT-file logging.

Command-Line Information

Parameter: LogVarNameModifier
Type: string
Value: 'none' | 'rt_' | '_rt'
Default: 'rt_'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-226

Code Generation Pane: Interface

See Also

• “Logging”

• “Log Data for Analysis”

6-227

6 Configuration Parameters for Simulink® Models

Interface
Specify the data exchange interface (API) to include.

Settings
Default: None

None
Does not include an API in the generated code.

C API
Uses the C API data interface.

Uses an external data interface.

ASAP2
Uses the ASAP2 data interface.

Dependencies
Selecting C API enables the following parameters:

• Generate C API for: signals

• Generate C API for: parameters

• Generate C API for: states

• Generate C API for: root-level I/O

Selecting enables the following parameters:

• Transport layer

• MEX-file arguments

• Static memory allocation

6-228

Code Generation Pane: Interface

Command-Line Information

Parameter: see table
Type: string
Value: 'on' | 'off'
Default: 'off'

To enable... Set this parameter... To this value...

None RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO,
ExtMode,
GenerateASAP2

'off'

C API RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates
RTWCAPIRootIO

'on'

ExtMode 'on'

ASAP2 GenerateASAP2 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact during development
None for production code generation

See Also

• “Data Interchange Using the C API”

• “Host/Target Communication”

6-229

6 Configuration Parameters for Simulink® Models

• “ASAP2 Data Measurement and Calibration”

6-230

Code Generation Pane: Interface

Generate C API for: signals
Generate a C API signals structure.

Settings
Default: on

On
Generates C API interface to global block outputs.

Off
Does not generate C API signals.

Dependency
This parameter is enabled by selecting Interface > C API.

Command-Line Information

Parameter: RTWCAPISignals
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Data Interchange Using the C API”

6-231

6 Configuration Parameters for Simulink® Models

Generate C API for: parameters
Generate C API parameter tuning structures.

Settings
Default: on

On
Generates C API interface to global block parameters.

Off
Does not generate C API parameters.

Dependency
This parameter is enabled by selecting Interface > C API.

Command-Line Information

Parameter: RTWCAPIParams
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Data Interchange Using the C API”

6-232

Code Generation Pane: Interface

Generate C API for: states
Generate a C API states structure.

Settings
Default: off

On
Generates C API interface to discrete and continuous states.

Off
Does not generate C API states.

Dependency
This parameter is enabled by selecting Interface > C API.

Command-Line Information

Parameter: RTWCAPIStates
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Data Interchange Using the C API”

6-233

6 Configuration Parameters for Simulink® Models

Generate C API for: root-level I/O
Generate a C API root-level I/O structure.

Settings
Default: off

On
Generates a C API interface to root-level inputs and outputs.

Off
Does not generate a C API interface to root-level inputs and outputs.

Dependency
This parameter is enabled by selecting Interface > C API.

Command-Line Information

Parameter: RTWCAPIRootIO
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Data Interchange Using the C API”

6-234

Code Generation Pane: Interface

Transport layer
Specify the transport protocol for communications.

Settings
Default: tcpip

tcpip
Applies a TCP/IP transport mechanism. The MEX-file name is
ext_comm.

serial
Applies a serial transport mechanism. The MEX-file name is
ext_serial_win32_comm.

Tip
The MEX-file name displayed next to Transport layer cannot be edited
in the Configuration Parameters dialog box. The value is specified either
in matlabroot/toolbox/simulink/simulink/extmode_transports.m, for
targets provided by MathWorks, or in an sl_customization.m file, for custom
targets and/or custom transports.

Dependency
This parameter is enabled by selecting External mode in the Interface
parameter.

Command-Line Information

Parameter: ExtModeTransport
Type: integer
Value: 0 | 1
Default: 0

6-235

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Target Interfacing”

• “Create a Transport Layer for External Communication”

6-236

Code Generation Pane: Interface

MEX-file arguments
Specify arguments to pass to an External mode interface MEX-file for
communicating with executing targets.

Settings
Default: ''

For TCP/IP interfaces, ext_comm allows three optional arguments:

• Network name of your target (for example, 'myPuter' or '148.27.151.12')

• Verbosity level (0 for no information or 1 for detailed information)

• TCP/IP server port number (an integer value between 256 and 65535, with
a default of 17725)

For a serial transport, ext_serial_win32_comm allows three optional
arguments:

• Verbosity level (0 for no information or 1 for detailed information)

• Serial port ID (for example, 1 for COM1, and so on)

• Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, with a default baud rate of 57600)

Dependency
Depending on the specified “System target file” on page 6-6, this parameter
is enabled by the value selection Data exchange > Interface > External
mode or by an External mode check box.

Command-Line Information

Parameter: ExtModeMexArgs
Type: string
Value: valid arguments
Default: ''

6-237

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Target Interfacing”

• “Choose Communication Protocol for Client and Server”

6-238

Code Generation Pane: Interface

Static memory allocation
Control memory buffer for External mode communication.

Settings
Default: off

On
Enables the Static memory buffer size parameter for allocating
dynamic memory.

Off
Uses a static memory buffer for External mode instead of allocating
dynamic memory (calls to malloc).

Tip
To determine how much memory you need to allocate, select verbose mode
on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependencies

• Depending on the specified “System target file” on page 6-6, this parameter
is enabled by the value selection Data exchange > Interface > External
mode or by an External mode check box.

• This parameter enables Static memory buffer size.

Command-Line Information

Parameter: ExtModeStaticAlloc
Type: string
Value: 'on' | 'off'
Default: 'off'

6-239

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“External Mode Interface Options”

6-240

Code Generation Pane: Interface

Static memory buffer size
Specify the memory buffer size for External mode communication.

Settings
Default: 1000000

Enter the number of bytes to preallocate for External mode communications
buffers in the target.

Tips

• If you enter too small a value for your application, External mode issues an
out-of-memory error.

• To determine how much memory you need to allocate, select verbose mode
on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependency
This parameter is enabled by Static memory allocation.

Command-Line Information

Parameter: ExtModeStaticAllocSize
Type: integer
Value: valid value
Default: 1000000

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-241

6 Configuration Parameters for Simulink® Models

See Also
“External Mode Interface Options”

6-242

Code Generation Pane: RSim Target

Code Generation Pane: RSim Target
The Code Generation RSim Target pane includes the following parameters
when the Simulink Coder product is installed on your system and you specify
the rsim.tlc system target file.

6-243

6 Configuration Parameters for Simulink® Models

In this section...

“Code Generation: RSim Target Tab Overview” on page 6-245

“Enable RSim executable to load parameters from a MAT-file” on page 6-246

“Solver selection” on page 6-247

“Force storage classes to AUTO” on page 6-248

6-244

Code Generation Pane: RSim Target

Code Generation: RSim Target Tab Overview
Set configuration parameters for rapid simulation.

Configuration
This tab appears only if you specify rsim.tlc as the “System target file”
on page 6-6.

See Also

• “Configure and Build Model for Rapid Simulation”

• “Run Rapid Simulations”

• “Code Generation Pane: RSim Target” on page 6-243

6-245

6 Configuration Parameters for Simulink® Models

Enable RSim executable to load parameters from a
MAT-file
Specify whether to load RSim parameters from a MAT-file.

Settings
Default: on

On
Enables RSim to load parameters from a MAT-file.

Off
Disables RSim from loading parameters from a MAT-file.

Command-Line Information

Parameter: RSIM_PARAMETER_LOADING
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Create a MAT-File That Includes a Model Parameter Structure”

6-246

Code Generation Pane: RSim Target

Solver selection
Instruct the target how to select the solver.

Settings
Default: auto

auto
Lets the target choose the solver. The target uses the Simulink
solver module if you specify a variable-step solver on the Solver pane.
Otherwise, the target uses a Simulink Coder built-in solver.

Use Simulink solver module
Instructs the target to use the variable-step solver that you specify on
the Solver pane.

Use fixed-step solvers
Instructs the target to use the fixed-step solver that you specify on the
Solver pane.

Command-Line Information

Parameter: RSIM_SOLVER_SELECTION
Type: string
Value: 'auto' | 'usesolvermodule' | 'usefixstep'
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-247

6 Configuration Parameters for Simulink® Models

Force storage classes to AUTO
Specify whether to retain your storage class settings in a model or to use
the automatic settings.

Settings
Default: on

On
Forces the Simulink software to determine storage classes.

Off
Causes the model to retain storage class settings.

Tips

• Turn this parameter on for flexible custom code interfacing.

• Turn this parameter off to retain storage class settings such as
ExportedGlobal or ImportExtern.

Command-Line Information

Parameter: RSIM_STORAGE_CLASS_AUTO
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-248

Code Generation Pane: S-Function Target

Code Generation Pane: S-Function Target
The Code Generation S-Function Target pane includes the following
parameters when the Simulink Coder product is installed on your system and
you specify the rtwsfcn.tlc system target file.

6-249

6 Configuration Parameters for Simulink® Models

In this section...

“Code Generation S-Function Target Tab Overview” on page 6-251

“Create new model” on page 6-252

“Use value for tunable parameters” on page 6-253

“Include custom source code” on page 6-254

6-250

Code Generation Pane: S-Function Target

Code Generation S-Function Target Tab Overview
Control code generated for the S-function target (rtwsfcn.tlc).

Configuration
This tab appears only if you specify the S-function target (rtwsfcn.tlc) as
the “System target file” on page 6-6.

See Also

• “Generated S-Function Block”

• “Code Generation Pane: S-Function Target” on page 6-249

6-251

6 Configuration Parameters for Simulink® Models

Create new model
Create a new model containing the generated S-function block.

Settings
Default: on

On
Creates a new model, separate from the current model, containing the
generated S-function block.

Off
Generates code but a new model is not created.

Command-Line Information

Parameter: CreateModel
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Generated S-Function Block”

6-252

Code Generation Pane: S-Function Target

Use value for tunable parameters
Use the variable value instead of the variable name in generated block mask
edit fields for tunable parameters.

Settings
Default: off

On
Uses variable values for tunable parameters instead of the variable
name in the generated block mask edit fields.

Off
Uses variable names for tunable parameters in the generated block
mask edit fields.

Command-Line Information

Parameter: UseParamValues
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Generated S-Function Block”

6-253

6 Configuration Parameters for Simulink® Models

Include custom source code
Include custom source code in the code generated for the S-function.

Settings
Default: off

On
Include provided custom source code in the code generated for the
S-function.

Off
Do not include custom source code in the code generated for the
S-function.

Command-Line Information

Parameter: AlwaysIncludeCustomSrc
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Generated S-Function Block”

6-254

Code Generation Pane: Tornado Target

Code Generation Pane: Tornado Target
The Code Generation Tornado Target pane includes the following parameters
when the Simulink Coder product is installed on your system and you specify
the tornado.tlc system target file.

6-255

6 Configuration Parameters for Simulink® Models

In this section...

“Code Generation: Tornado Target Tab Overview” on page 6-257

“Code replacement library” on page 6-258

“Shared code placement” on page 6-260

“MAT-file logging” on page 6-262

“MAT-file variable name modifier” on page 6-264

“Code Format” on page 6-266

“StethoScope” on page 6-267

“Download to VxWorks target” on page 6-269

“Base task priority” on page 6-271

“Task stack size” on page 6-273

“External mode” on page 6-274

“Transport layer” on page 6-276

“MEX-file arguments” on page 6-278

“Static memory allocation” on page 6-280

“Static memory buffer size” on page 6-282

6-256

Code Generation Pane: Tornado Target

Code Generation: Tornado Target Tab Overview
Control Simulink Coder generated code for the Tornado® target.

Configuration
This tab appears only if you specify tornado.tlc as the “System target file”
on page 6-6.

See Also

• Tornado User’s Guide from Wind River® Systems

• StethoScope User’s Guide from Wind River Systems

• “Asynchronous Support”

• “Code Generation Pane: Tornado Target” on page 6-255

6-257

http://www.windriver.com/
http://www.windriver.com/

6 Configuration Parameters for Simulink® Models

Code replacement library
Specify a target-specific math library for your model.

Settings
Default: C89/C90 (ANSI)

C89/C90 (ANSI)
Generates calls to the ISO/IEC 9899:1990 C standard math library for
floating-point functions.

C99 (ISO)
Generates calls to the ISO/IEC 9899:1999 C standard math library.

GNU99 (GNU)
Generates calls to the GNU gcc math library, which provides C99
extensions as defined by compiler option -std=gnu99.

C++ (ISO)
Generates calls to the ISO/IEC 14882:2003 C++ standard math library.
This setting is visible only if you selected C++ for the Language
parameter on the Code Generation pane of the Configuration
Parameters dialog box.

Note

• Additional values might be listed for Desktop Targets.

• The list of Code replacement library values is filtered based on
the Device vendor value selected for your model on the Hardware
Implementation pane. If you set Device vendor to Generic, the list of
Code replacement library values shows all registered CRLs.

Tip
Before setting this parameter, verify that your compiler supports the library
you want to use. If you select a parameter value that your compiler does not
support, compiler errors can occur.

6-258

Code Generation Pane: Tornado Target

Command-Line Information

Parameter: CodeReplacementLibrary
Type: string
Value: 'ANSI_C' | 'C99 (ISO)' | 'GNU99 (GNU)' | 'C++ (ISO)'
Default: 'ANSI_C'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Valid library

Safety precaution No impact

See Also
“Specifying Target Interfaces”

6-259

6 Configuration Parameters for Simulink® Models

Shared code placement
Specify the location for generating utility functions, exported data type
definitions, and declarations of exported data with custom storage class.

Settings
Default: Auto

Auto
Operates as follows:

• When the model contains Model blocks, places utility code within the
slprj/target/_sharedutils folder.

• When the model does not contain Model blocks, places utility code in
the build folder (generally, in model.c or model.cpp).

Shared location
Directs code for utilities to be placed within the slprj folder in your
working folder.

Command-Line Information

Parameter: UtilityFuncGeneration
Type: string
Value: 'Auto' | 'Shared location'
Default: 'Auto'

Recommended Settings

Application Setting

Debugging Shared location

Traceability Shared location

Efficiency No impact (execution, RAM)
Shared location (ROM)

Safety precaution No impact

6-260

Code Generation Pane: Tornado Target

See Also

• “Specifying Target Interfaces”

• “Shared Utility Code”

6-261

6 Configuration Parameters for Simulink® Models

MAT-file logging
Specify whether to enable MAT-file logging.

Settings
Default: off

On
Enables MAT-file logging. When you select this option, the generated
code saves to MAT-files simulation data specified in any of the following
ways:

• Configuration Parameters dialog box, Data Import/Export pane,
Save to workspace subpane (see “Data Import/Export Pane”)

• To Workspace blocks

• Scope blocks with the Save data to workspace parameter enabled

In simulation, this data would be written to the MATLAB workspace,
as described in “Export Simulation Data” and “Configure Signal Data
for Logging”. Setting MAT-file logging redirects the data to a MAT-file
instead. The file is named model.mat, where model is the name of your
model.

Off
Disables MAT-file logging. Clearing this option has the following
benefits:

• Eliminates overhead associated with supporting a file system, which
typically is not required for embedded applications

• Eliminates extra code and memory usage required to initialize,
update, and clean up logging variables

• Under certain conditions, eliminates code and storage associated
with root output ports

• Omits the comparison between the current time and stop time in
the model_step, allowing the generated program to run indefinitely,
regardless of the stop time setting

6-262

Code Generation Pane: Tornado Target

Dependencies
Selecting this parameter enables MAT-file variable name modifier.

Limitation
MAT-file logging does not work in a referenced model, and code is not
generated to implement it.

Command-Line Information

Parameter: MatFileLogging
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency Off

Safety precaution Off

See Also

• “Logging”

• “Log Data for Analysis”

• “Use Virtualized Output Ports Optimization”

6-263

6 Configuration Parameters for Simulink® Models

MAT-file variable name modifier
Select the string to add to the MAT-file variable names.

Settings
Default: rt_

rt_
Adds a prefix string.

_rt
Adds a suffix string.

none
Does not add a string.

Dependency
If you have an Embedded Coder license, this parameter is enabled by
MAT-file logging.

Command-Line Information

Parameter: LogVarNameModifier
Type: string
Value: 'none' | 'rt_' | '_rt'
Default: 'rt_'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-264

Code Generation Pane: Tornado Target

See Also

• “Logging”

• “Log Data for Analysis”

6-265

6 Configuration Parameters for Simulink® Models

Code Format
Specify the code generation format.

Settings
Default: RealTime

RealTime
Specifies the Real-Time code generation format.

RealTimeMalloc
Specifies the Real-Time Malloc code generation format.

Command-Line Information

Parameter: CodeFormat
Type: string
Value: 'RealTime' | 'RealTimeMalloc'
Default: 'RealTime'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Targets and Code Formats”

6-266

Code Generation Pane: Tornado Target

StethoScope
Specify whether to enable StethoScope, an optional data acquisition and data
monitoring tool.

Settings
Default: off

On
Enables StethoScope.

Off
Disables StethoScope.

Tips
You can optionally monitor and change the parameters of the executing
real-time program using either StethoScope or Simulink External mode, but
not both with the same compiled image.

Dependencies
Enabling StethoScope automatically disables External mode, and vice
versa.

Command-Line Information

Parameter: StethoScope
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

6-267

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency Off

Safety precaution Off

See Also

• Tornado User’s Guide from Wind River Systems

• StethoScope User’s Guide from Wind River Systems

6-268

http://www.windriver.com/
http://www.windriver.com/

Code Generation Pane: Tornado Target

Download to VxWorks target
Specify whether to automatically download the generated program to the
VxWorks target.

Settings
Default: off

On
Automatically downloads the generated program to VxWorks after
each build.

Off
Does not automatically download to VxWorks, you must downloaded
generated programs manually.

Tips

• Automatic download requires specifying the target name and host name
in the makefile.

• Before every build, reset VxWorks by pressing Ctrl+X on the host console
or power-cycling the VxWorks chassis. This clears dangling processes or
stale data that exists in VxWorks when the automatic download occurs.

Command-Line Information

Parameter: DownloadToVxWorks
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

6-269

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution Off

See Also

• Tornado User’s Guide from Wind River Systems

• “Asynchronous Support”

6-270

http://www.windriver.com/

Code Generation Pane: Tornado Target

Base task priority
Specify the priority with which the base rate task for the model is to be
spawned.

Settings
Default: 30

Tips

• For a multirate, multitasking model, the Simulink Coder software
increments the priority of each subrate task by one.

• The value you specify for this option will be overridden by a base priority
specified in a call to the rt_main() function spawned as a task.

Command-Line Information

Parameter: BasePriority
Type: integer
Value: valid value
Default: 30

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Might affect efficiency, depending on other
task’s priorities

Safety precaution No impact

See Also

• Tornado User’s Guide from Wind River Systems

6-271

http://www.windriver.com/

6 Configuration Parameters for Simulink® Models

• “Asynchronous Support”

6-272

Code Generation Pane: Tornado Target

Task stack size
Stack size in bytes for each task that executes the model.

Settings
Default: 16384

Command-Line Information

Parameter: TaskStackSize
Type: integer
Value: valid value
Default: 16384

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Larger stack may waste space

Safety precaution Larger stack reduces the possibility of
overflow

See Also

• Tornado User’s Guide from Wind River Systems

• “Asynchronous Support”

6-273

http://www.windriver.com/

6 Configuration Parameters for Simulink® Models

External mode
Specify whether to enable communication between the Simulink model and
an application based on a client/server architecture.

Settings
Default: on

On
Enables External mode. The client (Simulink model) transmits
messages requesting the server (application) to accept parameter
changes or to upload signal data. The server responds by executing
the request.

Off
Disables External mode.

Dependencies
Selecting this parameter enables:

• Transport layer

• MEX-file arguments

• Static memory allocation

Command-Line Information

Parameter: ExtMode
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

6-274

Code Generation Pane: Tornado Target

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Host/Target Communication”

6-275

6 Configuration Parameters for Simulink® Models

Transport layer
Specify the transport protocol for External mode communications.

Settings
Default: tcpip

tcpip
Applies a TCP/IP transport mechanism. The MEX-file name is
ext_comm.

Tip
The MEX-file name displayed next to Transport layer
cannot be edited in the Configuration Parameters dialog box.
For targets provided by MathWorks, the value is specified in
matlabroot/toolbox/simulink/simulink/extmode_transports.m.

Dependency
This parameter is enabled by the External mode check box.

Command-Line Information

Parameter: ExtModeTransport
Type: integer
Value: 0 | 1
Default: 0

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-276

Code Generation Pane: Tornado Target

See Also
“Target Interfacing”

6-277

6 Configuration Parameters for Simulink® Models

MEX-file arguments
Specify arguments to pass to an External mode interface MEX-file for
communicating with executing targets.

Settings
Default: ''

For TCP/IP interfaces, ext_comm allows three optional arguments:

• Network name of your target (for example, 'myPuter' or '148.27.151.12')

• Verbosity level (0 for no information or 1 for detailed information)

• TCP/IP server port number (an integer value between 256 and 65535, with
a default of 17725)

Dependency
This parameter is enabled by the External mode check box.

Command-Line Information

Parameter: ExtModeMexArgs
Type: string
Value: valid arguments
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-278

Code Generation Pane: Tornado Target

See Also

• “Target Interfacing”

• “Choose Communication Protocol for Client and Server”

6-279

6 Configuration Parameters for Simulink® Models

Static memory allocation
Control the memory buffer for External mode communication.

Settings
Default: off

On
Enables the Static memory buffer size parameter for allocating
allocate dynamic memory.

Off
Uses a static memory buffer for External mode instead of allocating
dynamic memory (calls to malloc).

Tip
To determine how much memory you need to allocate, select verbose mode
on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependencies

• This parameter is enabled by the External mode check box.

• This parameter enables Static memory buffer size.

Command-Line Information

Parameter: ExtModeStaticAlloc
Type: string
Value: 'on' | 'off'
Default: 'off'

6-280

Code Generation Pane: Tornado Target

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“External Mode Interface Options”

6-281

6 Configuration Parameters for Simulink® Models

Static memory buffer size
Specify the memory buffer size for External mode communication.

Settings
Default: 1000000

Enter the number of bytes to preallocate for External mode communications
buffers in the target.

Tips

• If you enter too small a value for your application, External mode issues an
out-of-memory error.

• To determine how much memory you need to allocate, select verbose mode
on the target to display the amount of memory it tries to allocate and the
amount of memory available.

Dependency
This parameter is enabled by Static memory allocation.

Command-Line Information

Parameter: ExtModeStaticAllocSize
Type: integer
Value: valid value
Default: 1000000

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-282

Code Generation Pane: Tornado Target

See Also
“External Mode Interface Options”

6-283

6 Configuration Parameters for Simulink® Models

Code Generation Pane: IDE Link

In this section...

“Code Generation: IDE Link Tab Overview” on page 6-286

“Build format” on page 6-287

“Build action” on page 6-289

“Overrun notification” on page 6-292

“Function name” on page 6-294

“Configuration” on page 6-295

“Compiler options string” on page 6-297

“Linker options string” on page 6-299

“System stack size (MAUs)” on page 6-301

6-284

Code Generation Pane: IDE Link

In this section...

“Profile real-time execution” on page 6-304

“Profile by” on page 6-306

“Number of profiling samples to collect” on page 6-308

“Maximum time allowed to build project (s)” on page 6-310

“Maximum time allowed to complete IDE operation (s)” on page 6-312

“Export IDE link handle to base workspace” on page 6-313

“IDE link handle name” on page 6-315

“Source file replacement” on page 6-316

6-285

6 Configuration Parameters for Simulink® Models

Code Generation: IDE Link Tab Overview
Use this pane to configure the following parameters:

• Run-Time: set the build format to an IDE project or makefile, choose
whether to build and execute the project, or create a PIL project.

• Vendor Tool Chain: set compiler and linker options.

• Code Generation: set options for profiling real-time execution.

• Link Automation: Set the maximum time to build projects and complete
IDE operations. Set a default name for the IDE link handle.

• Diagnostics: Select the type of message to generate when the software
replaces source files.

6-286

Code Generation Pane: IDE Link

Build format
Defines how Simulink Coder software responds when you press Ctrl+B to
build your model.

Settings
Default: Project

Project
Builds your model as an IDE project.

Makefile
Creates a makefile and uses it to build your model.

Dependencies
Selecting Makefile removes the following parameters:

• Code Generation

- Profile real-time execution

- Profile by

- Number of profiling samples to collect

• Link Automation

- Maximum time allowed to build project (s)

- Maximum time allowed to complete IDE operation (s)

- Export IDE link handle to base workspace

- IDE link handle name

Command-Line Information

Parameter: buildFormat
Type: string
Value: Project | Makefile
Default: Build_and_execute

6-287

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging Project

Traceability Project

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-288

Code Generation Pane: IDE Link

Build action
Defines how Simulink Coder software responds when you press Ctrl+B to
build your model.

Settings
Default: Build_and_execute

If you set Build format to Project, select one of the following options:

Build_and_execute
Builds your model, generates code from the model, and then compiles
and links the code. After the software links your compiled code, the
build process downloads and runs the executable on the processor.

Create_project
Directs Simulink Coder software to create a new project in the IDE. The
command line equivalent for this setting is Create.

Archive_library
Invokes the IDE Archiver to build and compile your project, but It does
not run the linker to create an executable project. Instead, the result
is a library project.

Build
Builds a project from your model. Compiles and links the code. Does not
download and run the executable on the processor.

Create_processor_in_the_loop_project
Directs the Simulink Coder code generation process to create PIL
algorithm object code as part of the project build.

If you set Build format to Makefile, select one of the following options:

Create_makefile
Creates a makefile. For example, “.mk”. The command line equivalent
for this setting is Create.

Archive_library
Creates a makefile and an archive library. For example, “.a” or “.lib”.

Build
Creates a makefile and an executable. For example, “.exe”.

6-289

6 Configuration Parameters for Simulink® Models

Build_and_execute
Creates a makefile and an executable. Then it evaluates the
execute instruction under the Execute tab in the current XMakefile
configuration.

Dependencies
Selecting Archive_library removes the following parameters:

• Overrun notification

• Function name

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Overrun notification

• Function name

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace with the option set to
export the handle

6-290

Code Generation Pane: IDE Link

Command-Line Information

Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create | Archive_library |
Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic.

6-291

6 Configuration Parameters for Simulink® Models

Overrun notification
Specifies how your program responds to overrun conditions during execution.

Settings
Default: None

None
Your program does not notify you when it encounters an overrun
condition.

Print_message
Your program prints a message to standard output when it encounters
an overrun condition.

Call_custom_function
When your program encounters an overrun condition, it executes a
function that you specify in Function name.

Tips

• The definition of the standard output depends on your configuration.

Dependencies
Selecting Call_custom_function enables the Function name parameter.

Setting this parameter to Call_custom_function enables the Function
name parameter.

Command-Line Information

Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

6-292

Code Generation Pane: IDE Link

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function

Traceability Print_message

Efficiency None

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-293

6 Configuration Parameters for Simulink® Models

Function name
Specifies the name of a custom function your code runs when it encounters an
overrun condition during execution.

Settings
No Default

Dependencies
This parameter is enabled by setting Overrun notification to
Call_custom_function.

Command-Line Information

Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String

Traceability String

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-294

Code Generation Pane: IDE Link

Configuration
Sets the Configuration for building your project from the model.

Settings
Default: Custom

Custom
Lets the user apply a specialized combination of build and optimization
settings.

Custom applies the same settings as the Release project configuration
in IDE, except:

• The compiler options do not use any optimizations.

• The memory configuration specifies a memory model that uses Far
Aggregate for data and Far for functions.

Debug
Applies the Debug Configuration defined by the IDE to the generated
project and code.

Release
Applies the Release project configuration defined by the IDE to the
generated project and code.

Dependencies
• Selecting Custom disables the reset options for Compiler options string
and Linker options string.

• Selecting Release sets the Compiler options string to the settings
defined by the IDE.

• Selecting Debug sets the Compiler options string to the settings defined
by the IDE.

.

Command-Line Information

Parameter: projectOptions

6-295

6 Configuration Parameters for Simulink® Models

Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom or Debug

Traceability Custom, Debug, Release

Efficiency Release

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-296

Code Generation Pane: IDE Link

Compiler options string
To determine the degree of optimization provided by the optimizing compiler,
enter the optimization level to apply to files in your project. For details about
the compiler options, refer to your IDE documentation. When you create new
projects, the coder product does not set any optimization flags.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the option
string.

• Setting Configuration to Custom applies the Custom compiler options
defined by coder software. Custom does not use any optimizations.

• Setting Configuration to Debug applies the debug settings defined by
the IDE.

• Setting Configuration to Release applies the release settings defined
by the IDE.

Command-Line Information

Parameter: compilerOptionsStr
Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom

Traceability Custom

6-297

6 Configuration Parameters for Simulink® Models

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-298

Code Generation Pane: IDE Link

Linker options string
To specify the options provided by the linker during link time, you enter the
linker options as a string. For details about the linker options, refer to your
IDE documentation. When you create new projects, the coder product does
not set any linker options.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the
options string.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: linkerOptionsStr
Type: string
Value: any valid linker option
Default: none

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-299

6 Configuration Parameters for Simulink® Models

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-300

Code Generation Pane: IDE Link

System stack size (MAUs)
Enter the amount of memory that is available for allocating stack data.
Block output buffers are placed on the stack until the stack memory is fully
allocated. After that, the output buffers go in global memory.

This parameter is used in all targets to allocate the stack size for the
generated application. For example, with embedded processors that are not
running an operating system, this parameter determines the total stack space
that can be used for the application. For operating systems such as Linux or
WindowsVxWorks, this value specifies the stack space allocated per thread.

This parameter also affects the “Maximum stack size (bytes)” parameter,
located in the Optimization > Signals and Parameters pane.

Settings
Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable units (MAUs). An MAU is
typically 1 byte, but its size can vary by target processor.

• The software does not verify the value you entered is valid.

Dependencies
Setting Build action to Archive_library removes this parameter.

When you set the System target file parameter on the Code Generation
pane to idelink_ert.tlc or idelink_grt.tlc, the software sets the
Maximum stack size parameter on the Optimization > Signals and
Parameters pane to Inherit from target and makes it non-editable.
In that case, the Maximum stack size parameter compares the value of
(System stack size/2) with 200,000 bytes and uses the smaller of the two
values.

6-301

6 Configuration Parameters for Simulink® Models

Command-Line Information

Parameter: systemStackSize
Type: int
Default: 8192

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-302

6 Configuration Parameters for Simulink® Models

6-303

6 Configuration Parameters for Simulink® Models

Profile real-time execution
Enables real-time execution profiling in the generated code by adding
instrumentation for task functions or atomic subsystems.

Settings
Default: Off

On
Adds instrumentation to the generated code to support execution
profiling and generate the profiling report.

Off
Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect and Profile
by.

Selecting this parameter enables Export IDE link handle to base
workspace and makes it non-editable, since the coder software must create a
handle.

Setting Build action to Archive_library or
Create_processor_in_the_loop project removes this parameter.

Command-Line Information

Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

6-304

Code Generation Pane: IDE Link

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics..

6-305

6 Configuration Parameters for Simulink® Models

Profile by
Defines which execution profiling technique to use.

Settings
Default: Task

Task
Profiles model execution by the tasks in the model.

Atomic subsystem
Profiles model execution by the atomic subsystems in the model.

Dependencies
Selecting Real-time execution profiling enables this parameter.

Command-Line Information

Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging Task or Atomic subsystem

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic.

6-306

Code Generation Pane: IDE Link

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics.

6-307

6 Configuration Parameters for Simulink® Models

Number of profiling samples to collect
Specify the size of the buffer that holds the profiling samples. Enter a value
that is 2 times the number of profiling samples.

Each task or subsystem execution instance represents one profiling sample.
Each sample requires two memory locations, one for the start time and one
for the end time. Consequently, the size of the buffer is twice the number
of samples.

Sample collection begins with the start of code execution and ends when the
buffer is full.

The profiling data is held in a statically sited buffer on the target processor.

Settings
Default: 100

Minimum: 2

Maximum: Buffer capacity

Tips

• Data collection stops when the buffer is full, but the application and
processor continue running.

• Real-time task execution profiling works with hardware only. Simulators
do not support the profiling feature.

Dependencies
This parameter is enabled by Profile real-time execution.

Command-Line Information

Parameter:ProfileNumSamples
Type: int
Value: Positive integer
Default: 100

6-308

Code Generation Pane: IDE Link

Recommended Settings

Application Setting

Debugging 100

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-309

6 Configuration Parameters for Simulink® Models

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message.

Settings
Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the
completion message in the allotted time.

• This timeout value does not depend on the global timeout value in a
IDE_Obj object or the Maximum time allowed to complete IDE
operation timeout value.

Dependency
This parameter is disabled when you set Build action to Create_project.

Command-Line Information

Parameter:ideObjBuildTimeout
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

6-310

Code Generation Pane: IDE Link

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-311

6 Configuration Parameters for Simulink® Models

Maximum time allowed to complete IDE operation (s)
specifies how long, in seconds, the software waits for IDE functions, such as
read or write, to return completion messages.

Settings
Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the message
in the allotted time.

• This timeout value does not depend on the global timeout value in a
IDE_Obj object or the Maximum time allowed to build project (s)
timeout value

Command-Line Information

Parameter:'ideObjTimeout'
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

6-312

Code Generation Pane: IDE Link

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

Export IDE link handle to base workspace
Directs the software to export the IDE_Obj object to your MATLAB workspace.

Settings
Default: On

On
Directs the build process to export the IDE_Obj object created to your
MATLAB workspace. The new object appears in the workspace browser.
Selecting this option enables the IDE link handle name option.

Off
prevents the build process from exporting the IDE_Obj object to your
MATLAB software workspace.

Dependency
Selecting Profile real-time execution enables Export IDE link handle
to base workspace and makes it non-editable, since the coder software
must create a handle.

Selecting Export IDE link handle to base workspace enables IDE link
handle name.

Command-Line Information

Parameter: exportIDEObj
Type: string
Value: 'on' | 'off'
Default: 'on'

6-313

6 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-314

Code Generation Pane: IDE Link

IDE link handle name
specifies the name of the IDE_Obj object that the build process creates.

Settings
Default: IDE_Obj

• Enter any valid C variable name, without spaces.

• The name you use here appears in the MATLAB workspace browser to
identify the IDE_Obj object.

• The handle name is case sensitive.

Dependency
This parameter is enabled by Export IDE link handle to base workspace.

Command-Line Information

Parameter: ideObjName
Type: string
Value:
Default: IDE_Obj

Recommended Settings

Application Setting

Debugging Enter any valid C program variable name,
without spaces

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-315

6 Configuration Parameters for Simulink® Models

Source file replacement
Selects the diagnostic action to take if the coder software detects conflicts that
you are replacing source code with custom code.

Settings
Default: warn

none
Does not generate warnings or errors when it finds conflicts.

warning
Displays a warning.

error
Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

Tips

• The build operation continues if you select warning and the software
detects custom code replacement. You see warning messages as the build
progresses.

• Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files.

• Select none when you do not want to see multiple messages during your
build.

• The messages apply to Simulink Coder Custom Code replacement options
as well.

Command-Line Information

Parameter: DiagnosticActions
Type: string
Value: none | warning | error
Default: warning

6-316

Code Generation Pane: IDE Link

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency warning

Safety precaution error

See Also
For more information, refer to the “Code Generation Pane: IDE Link” topic.

6-317

6 Configuration Parameters for Simulink® Models

Parameter Reference

In this section...

“Recommended Settings Summary” on page 6-318

“Parameter Command-Line Information Summary” on page 6-347

Recommended Settings Summary
The following table summarizes the impact of each configuration parameter
on debugging, traceability, efficiency, and safety considerations, and indicates
the factory default configuration settings for the GRT and ERT targets,
unless otherwise specified.

For parameters that are available only when an ERT target is specified,
see the “Recommended Settings Summary” in the Embedded Coder
documentation.

For additional details, click the links in the Configuration Parameter column.

Mapping Application Requirements to the Solver Pane

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Start time No impact No impact No
impact

0.0 0.0 seconds

Stop time No impact No impact No
impact

Any positive
value

10.0 seconds

Type Fixed-step Fixed-step Fixed-stepFixed-step Variable-step
(you must change
to Fixed-step for
code generation)

6-318

Parameter Reference

Mapping Application Requirements to the Solver Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Solver” No impact No impact No
impact

Discrete
(no
continuous
states)

ode3
(Bogacki-Shampine)

“Periodic sample
time constraint”

No impact No impact No
impact

Specified
or Ensure
sample
time
independent

Unconstrained

“Sample time
properties”

No impact No impact No
impact

Period,
offset, and
priority of
each sample
time in the
model; faster
sample
times must
have higher
priority
than slower
sample times

''

6-319

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Solver Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Tasking mode for
periodic sample
times

No impact No impact No
impact

No impact Auto

“Automatically
handle rate
transition for
data transfer”

No impact No impact
(for
simulation
and during
development)

Off (for
production
code
generation)

No
impact

Off Off

Mapping Application Requirements to the Data Import/Export Pane

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Input” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

Off

“Initial state” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

Off

6-320

Parameter Reference

Mapping Application Requirements to the Data Import/Export Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Time” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

On

“States” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

Off

“Output” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

On

“Final states” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

Off

“Signal logging” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

On

“Record
and inspect
simulation
output”

No impact No impact No
impact

No impact
(GRT)

Off (ERT)

Off

“Limit data
points to last”

No impact No impact No
impact

No impact
(GRT)

Off (ERT)

On

6-321

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Data Import/Export Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Decimation” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

1

“Format” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

Array

“Output options” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

Refine output

“Refine factor” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

1

“Output times” No impact No impact No
impact

No impact
(GRT)

Off (ERT)

'[]'

6-322

Parameter Reference

Mapping Application Requirements to the Optimization Pane: General Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Block reduction Off (GRT)

No impact
(ERT)

Off On Off On

Implement
logic signals
as Boolean data
(vs. double)

No impact No impact On On On

Conditional
input branch
execution

No impact On On
(execution)

No
impact
(ROM,
RAM)

Off On

Application
lifespan (days)

No impact No impact Finite
value

inf inf

Use memset to
initialize floats
and doubles to
0.0

No impact No impact On*
(execution,
ROM)

No
impact
(RAM)

No impact On

Use
floating-point
multiplication
to handle
net slope
corrections

No impact No impact On (when
target
hardware
supports
efficient
multiplication)
Off
(otherwise)

Off Off

6-323

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Optimization Pane: General Tab (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Remove
code from
floating-point
to integer
conversions
that wraps
out-of-range
values

Off Off On
(execution,
ROM)

No
impact
(RAM)

Off (GRT)

On (ERT)

Off

Remove
code from
floating-point
to integer
conversions
with saturation
that maps NaN
to zero

Off Off On Off (GRT)

On (ERT)

On

*The command-line value is reverse of the listed value.

Mapping Application Requirements to the Optimization Pane: Signals and Parameters
Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Inline
parameters

Off (GRT)

On (ERT)

On On No impact Off

Signal storage
reuse

Off Off On No impact On

6-324

Parameter Reference

Mapping Application Requirements to the Optimization Pane: Signals and Parameters
Tab (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Enable local
block outputs

Off No impact On No impact On

Eliminate
superfluous
local variables
(Expression
folding)

Off No impact
(GRT)

Off (ERT)

On No impact On

“Minimize data
copies between
local and global
variables”

Off Off No
impact
(execution)

On
(ROM,
RAM)

No impact Off

Loop unrolling
threshold

No impact No impact >0 >1 5

Maximum stack
size (bytes)

No impact No impact No
impact

No impact Inherit from
target

Use memcpy
for vector
assignment

No impact No impact On No impact On

Memcpy
threshold (bytes)

No impact No impact Accept
default or
determine
target-specific
optimal
value

No impact 64

6-325

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Optimization Pane: Signals and Parameters
Tab (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Reuse block
outputs

Off Off On No impact On

Inline invariant
signals

Off Off On No impact Off

Mapping Application Requirements to the Optimization Pane: Stateflow Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Use bitsets for
storing state
configuration”

Off Off Off
(execution,
ROM)

On
(RAM)

No impact Off

“Use bitsets for
storing Boolean
data”

Off Off Off
(execution,
ROM)

On
(RAM)

No impact Off

6-326

Parameter Reference

Mapping Application Requirements to the Diagnostics Pane: Solver Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Algebraic loop” error No impact No
impact

error warning

“Minimize
algebraic loop”

No impact No impact No
impact

error warning

“Block priority
violation”

No impact No impact No
impact

error warning

“Consecutive
zero-crossings
violation”

No impact No impact No
impact

warning or
error

error

“Unspecified
inheritability
of sample time”

No impact No impact No
impact

error warning

“Solver data
inconsistency”

warning No impact none No impact warning

“Automatic
solver parameter
selection”

No impact No impact No
impact

error warning

Mapping Application Requirements to the Diagnostics Pane: Sample Time Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Source block
specifies -1
sample time”

No impact No impact No
impact

error none

“Discrete used as
continuous”

No impact No impact No
impact

error warning

6-327

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Diagnostics Pane: Sample Time Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Multitask rate
transition”

No impact No impact No
impact

error error

“Single task rate
transition”

No impact No impact No
impact

none or
error

none

“Multitask
conditionally
executed
subsystem”

No impact No impact No
impact

error error

“Tasks with
equal priority”

No impact No impact No
impact

none or
error

warning

“Enforce sample
times specified
by Signal
Specification
blocks”

No impact No impact No
impact

error warning

Mapping Application Requirements to the Diagnostics Pane: Data Validity Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Signal
resolution”

No impact No impact No
impact

Explicit
only

Explicit only

“Division by
singular matrix”

No impact No impact No
impact

error none

“Underspecified
data types”

No impact No impact No
impact

error none

6-328

Parameter Reference

Mapping Application Requirements to the Diagnostics Pane: Data Validity Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Simulation
range checking”

warning or
error

warning or
error

none error none

“Detect
overflow”

No impact No impact No
impact

error warning

“Inf or NaN block
output”

No impact No impact No
impact

error none

“"rt" prefix for
identifiers”

No impact No impact No
impact

error error

“Detect
downcast”

No impact No impact No
impact

error error

“Detect
overflow”

No impact No impact No
impact

error error

“Detect
underflow”

No impact No impact No
impact

error none

“Detect precision
loss”

No impact No impact No
impact

error error

“Detect loss of
tunability”

No impact No impact No
impact

error none

“Detect read
before write”

No impact No impact No
impact

error Enable all as
warnings

“Detect write
after read”

No impact No impact No
impact

error Enable all as
warning

“Detect write
after write”

No impact No impact No
impact

error Enable all as
errors

“Multitask data
store”

No impact No impact No
impact

error warning

6-329

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Diagnostics Pane: Data Validity Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Duplicate data
store names”

warning No impact none No impact none

“Check
undefined
subsystem initial
output”

No impact No impact No
impact

On On

“Check
preactivation
output of
execution
context”

No impact No impact No
impact

On Off

“Check runtime
output of
execution
context”

No impact No impact No
impact

On Off

Model
Verification
block enabling

No impact No impact No
impact

No impact
(GRT)

Disable
all (ERT)

Use local
settings

6-330

Parameter Reference

Mapping Application Requirements to the Diagnostics Pane: Type Conversion Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Unnecessary
type
conversions”

No impact No impact No
impact

warning none

“Vector/matrix
block input
conversion”

No impact No impact No
impact

error none

“32-bit integer to
single precision
float conversion”

No impact No impact No
impact

warning warning

Mapping Application Requirements to the Diagnostics Pane: Connectivity Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Signal label
mismatch”

No impact No impact No
impact

error none

“Unconnected
block input
ports”

No impact No impact No
impact

error warning

“Unconnected
block output
ports”

No impact No impact No
impact

error warning

“Unconnected
line”

No impact No impact No
impact

error none

“Unspecified bus
object at root
Outport block”

No impact No impact No
impact

error warning

6-331

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Diagnostics Pane: Connectivity Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Element name
mismatch”

No impact No impact No
impact

error warning

“Mux blocks used
to create bus
signals”

No impact No impact No
impact

error warning

“Bus signal
treated as
vector”

No impact No impact No
impact

error warning

“Invalid
function-call
connection”

No impact No impact No
impact

error error

“Context-dependent
inputs”

No impact No impact No
impact

Enable all Use local
settings

Mapping Application Requirements to the Diagnostics Pane: Compatibility Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“S-function
upgrades
needed”

No impact No impact No
impact

error none

6-332

Parameter Reference

Mapping Application Requirements to the Diagnostics Pane: Model Referencing Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Model block
version
mismatch”

No impact No impact No
impact

none none

“Port and
parameter
mismatch”

No impact No impact No
impact

error none

“Model
configuration
mismatch”

No impact No impact No
impact

warning none

“Invalid root
Inport/Outport
block
connection”

No impact No impact No
impact

error none

“Unsupported
data logging”

No impact No impact No
impact

error warning

Mapping Application Requirements to the Diagnostics Pane: Saving Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Block diagram
contains
disabled library
links”

No impact No impact No
impact

No impact warning

“Block diagram
contains
parameterized
library links”

No impact No impact No
impact

No impact none

6-333

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Diagnostics Pane: Stateflow Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Unused data
and events”

warning No impact No
impact
(for
simulation
and
during
development)

none (for
production
code
generation)

warning warning

“Unexpected
backtracking”

warning No impact No
impact

error warning

“Invalid input
data access
in chart
initialization”

warning No impact No
impact

error warning

“No
unconditional
default
transitions”

warning No impact No
impact
(for
simulation
and
during
development)

none (for
production

error warning

6-334

Parameter Reference

Mapping Application Requirements to the Diagnostics Pane: Stateflow Tab (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

code
generation)

“Transition
outside natural
parent”

warning No impact No
impact
(for
simulation
and
during
development)

none (for
production
code
generation)

error warning

Mapping Application Requirements to the Hardware Implementation Pane

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Device vendor No impact No impact No
impact

No impact Generic

Device type No impact No impact No
impact

No impact Unspecified
(assume 32 bit
Generic)

6-335

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Hardware Implementation Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Number of bits No impact No impact Target
specific

No
impact for
simulation
and during
development

Match
operation of
compiler and
hardware
for code
generation

char 8, short 16,
int 32, long 32,
native 32

Largest atomic
size

No impact No impact Target
specific

No
impact for
simulation
and during
development

Match
operation of
compiler and
hardware
for code
generation

integer Char,
floating-point None

Byte ordering No impact No impact No
impact

No impact Unspecified

6-336

Parameter Reference

Mapping Application Requirements to the Hardware Implementation Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Signed integer
division rounds
to

No
impact for
simulation
and during
development

Undefined
for
production
code
generation

No
impact for
simulation
and during
development

Zero or
Floor for
production
code
generation

No
impact
for
simulation
and
during
development

Zero for
production
code
generation

No
impact for
simulation
and during
development

Floor for
production
code
generation

Undefined

Shift right on a
signed integer as
arithmetic shift

No impact No impact On No impact On

Emulation
hardware (code
generation only)

No impact No impact No
impact

No impact On

Mapping Application Requirements to the Model Referencing Pane

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Rebuild” No impact No impact No
impact

If any
changes
detected or
Never

If you use
the Never
setting,

If any changes
detected

6-337

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Model Referencing Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

then set
the Never
rebuild
diagnostic
parameter
to Error
if rebuild
required

“Never rebuild
diagnostic”

No impact No impact No
impact

error if
rebuild
required

error if rebuild
required

“Enable parallel
model reference
builds”

No impact No impact No
impact

No impact Off

“MATLAB
worker
initialization for
builds”

No impact No impact No
impact

No impact None

“Total number
of instances
allowed per top
model”

No impact No impact No
impact

No impact Multiple

“Pass fixed-size
scalar root
inputs by
value for code
generation”

No impact No impact No
impact

Off Off

“Minimize
algebraic loop
occurrences”

No impact No impact No
impact

Off Off

6-338

Parameter Reference

Mapping Application Requirements to the Model Referencing Pane (Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Propagate sizes
of variable-size
signals”

No impact No impact No
impact

Off Infer from
blocks in model

“Model
dependencies”

No impact No impact No
impact

No impact ''

Mapping Application Requirements to the Simulation Target Pane: General Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Enable
debugging/animation”

On No impact Off On On

“Enable overflow
detection (with
debugging)”

On No impact Off On On

“Ensure memory
integrity”

On On Off On On

“Echo
expressions
without
semicolons”

On No impact Off No impact On

“Use BLAS
library for faster
simulation”

No impact No impact On No impact On

6-339

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Simulation Target Pane: General Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Ensure
responsiveness”

On On Off On On

“Simulation
target build
mode”

No impact No impact No
impact

No impact Incremental
build

Mapping Application Requirements to the Simulation Target Pane: Symbols Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Reserved
names”

No impact No impact No
impact

No impact {}

Mapping Application Requirements to the Simulation Target Pane: Custom Code Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Parse custom
code symbols”

On No impact No
impact

On On

“Source file” No impact No impact No
impact

No impact ''

“Header file” No impact No impact No
impact

No impact ''

“Initialize
function”

No impact No impact No
impact

No impact ''

6-340

Parameter Reference

Mapping Application Requirements to the Simulation Target Pane: Custom Code Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

“Terminate
function”

No impact No impact No
impact

No impact ''

“Include
directories”

No impact No impact No
impact

No impact ''

“Source files” No impact No impact No
impact

No impact ''

“Libraries” No impact No impact No
impact

No impact ''

Mapping Application Requirements to the Code Generation Pane: General Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

System target
file

No impact No impact No impact No impact
(GRT)

ERT based
(ERT)

grt.tlc

Language No impact No impact No impact No impact C

Compiler
optimization
level

Optimizations
off
(faster
builds)

Optimizations
off
(faster
builds)

Optimizations
on (faster
runs)
(execution)

No impact
(ROM, RAM)

No impact Optimizations
off (faster
builds)

6-341

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Code Generation Pane: General Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Custom
compiler
optimization
flags

Optimizations
off
(faster
builds)

Optimizations
off
(faster
builds)

Optimizations
on (faster
runs)

No impact Optimizations
off (faster
builds)

TLC options No impact No impact No impact No impact ''

Generate
makefile

No impact No impact No impact No impact On

Make command No impact No impact No impact make_rtw make_rtw

Template
makefile

No impact No impact No impact No impact grt_default_tmf

“Select
objective” on
page 6-25

Debugging Not
applicable
for
GRT-based
targets

Execution
efficiency

Not
applicable
for
GRT-based
targets

Unspecified

“Check
model before
generating
code” on page
6-33

On
(proceed
with
warnings)
or On
(stop for
warnings)

On
(proceed
with
warnings)
or On
(stop for
warnings)

On
(proceed
with
warnings)
or On
(stop for
warnings)

On
(proceed
with
warnings)
or On
(stop for
warnings)

Off

Generate code
only

Off No impact No impact No impact Off

6-342

Parameter Reference

Mapping Application Requirements to the Code Generation Pane: Report Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

Precautions

Factory Default

“Create code
generation
report” on page
6-45

On On No
impact

On Off

“Open report
automatically”
on page 6-48

On On No
impact

No impact Off

Mapping Application Requirements to the Code Generation Pane: Comments Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Include
comments

On On No
impact

On On

Simulink block /
Stateflow object
comments

On On No
impact

On On

Show eliminated
blocks

On On No
impact

On Off

Verbose
comments for
Simulink Global
storage class

On On No
impact

On Off

Operator
Annotations

No impact On No
impact

On Off

6-343

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Code Generation Pane: Symbols Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Maximum
identifier length

Any valid
value

>30 No
impact

>30 31

Use the same
reserved names
as Simulation
Target

No impact No impact No
impact

No impact Off

Reserved names No impact No impact No
impact

No impact {}

Mapping Application Requirements to the Code Generation Pane: Custom Code Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Use the same
custom code
settings as
Simulation
Target

No impact No impact No
impact

No impact Off

Source file No impact No impact No
impact

No impact ''

Header file No impact No impact No
impact

No impact ''

Initialize
function

No impact No impact No
impact

No impact ''

Terminate
function

No impact No impact No
impact

No impact ''

Include
directories

No impact No impact No
impact

No impact ''

6-344

Parameter Reference

Mapping Application Requirements to the Code Generation Pane: Custom Code Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Source files No impact No impact No
impact

No impact ''

Libraries No impact No impact No
impact

No impact ''

Mapping Application Requirements to the Code Generation Pane: Debug Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Verbose build On No impact No
impact

On On

Retain .rtw file On No impact No
impact

No impact Off

“Profile TLC” on
page 6-155

On No impact No
impact

No impact Off

Start TLC
debugger when
generating code

On No impact No
impact

No impact Off

Start TLC
coverage when
generating code

On No impact No
impact

No impact Off

Enable TLC
assertion

On No impact No
impact

On Off

6-345

6 Configuration Parameters for Simulink® Models

Mapping Application Requirements to the Code Generation Pane: Interface Tab

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Code
replacement
library

No impact No impact Any valid
value

No impact C89/C90 (ANSI)

Shared code
placement

Shared
location
(GRT)

No impact
(ERT)

Shared
location
(GRT)

No impact
(ERT)

No
impact
(execution,
RAM)

Shared
location
(ROM)

No impact Auto

Support
non-finite
numbers

No impact No impact Off
(Execution,
ROM)

No
impact
(RAM)

Off On

Classic call
interface

No impact Off Off
(execution,
ROM),
No
impact
(RAM)

Off Off (except On
for GRT models
created before
R2012a)

MAT-file logging On No impact Off Off On (GRT)

Off (ERT)

MAT-file variable
name modifier

No impact No impact No
impact

No impact rt_

Interface No impact No impact No
impact

No impact
(GRT)

None (ERT)

None

6-346

Parameter Reference

Mapping Application Requirements to the Code Generation Pane: Interface Tab
(Continued)

Settings for Building Code

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution Factory Default

Generate C API
for: signals

No impact No impact No
impact

No impact On

Generate C API
for: parameters

No impact No impact No
impact

No impact On

Generate C API
for: states

No impact No impact No
impact

No impact Off

Transport layer No impact No impact No
impact

No impact tcpip

MEX-file
arguments

No impact No impact No
impact

No impact ''

Static memory
allocation

No impact No impact No
impact

No impact Off

“Static memory
buffer size” on
page 6-282

No impact No impact No
impact

No impact 1000000

Parameter Command-Line Information Summary
The following table lists Simulink Coder parameters that you can use to
tune model and target configurations. The table provides brief descriptions,
valid values (bold type highlights defaults), and a mapping to Configuration
Parameter dialog box equivalents.

Use the get_param and set_param commands to retrieve and set the values of
the parameters on the MATLAB command line or programmatically in scripts.

The Configuration Wizard in the Embedded Coder product provides buttons
and scripts for customizing code generation. For information on using
Configuration Wizard features, see “Use Configuration Wizard Blocks” in
the Embedded Coder documentation.

6-347

6 Configuration Parameters for Simulink® Models

For general information about Simulink parameters, see “Configuration
Parameters Dialog Box Overview”. For information on using get_param and
set_param to tune the parameters for various model configurations, see
“Tune Parameters”.

For parameters that are specific to the ERT target, or targets based on the
ERT target, see “Parameter Command-Line Information Summary” in the
Embedded Coder documentation.

Note Parameters that are specific to Stateflow or Simulink Fixed
Point™ products are marked with (Stateflow) and (Simulink Fixed Point),
respectively.

The default setting for a parameter might vary for different targets.

6-348

Parameter Reference

Command-Line Information: Optimization Pane: General Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

BooleanDataType
off, on

Optimization
> Implement logic
signals as Boolean
data (vs. double)

Control the output data type of
blocks that generate logic signals.

EfficientFloat2IntCast
off, on

Optimization
> Remove code from
floating-point to
integer conversions
that wrap
out-of-range values

Remove wrapping code that
handles out-of-range floating-point
to integer conversion results.

EfficientMapNaN2IntZero
off, on

Optimization
> Remove code from
floating-point to
integer conversions
with saturation that
maps NaN to zero

Remove code that handles
floating-point to integer conversion
results for NaN values.

InitFltsAndDblsToZero
off, on

Optimization > Use
memset to initialize
floats and doubles to
0.0

Optimize initialization of storage
for float and double values. Set
this option if the representation
of floating-point zero used by
your compiler and target CPU is
identical to the integer bit pattern
0.

LifeSpan
string

Optimization
> Application
lifespan (days)

Optimize the size of counters used
to compute absolute and elapsed
time, using the specified application
life span value.

NoFixptDivByZeroProtection
(Simulink Fixed Point)
off, on

Optimization
> Remove code that
protects against
division arithmetic
exceptions

Suppress generation of code that
guards against division by zero for
fixed-point data.

6-349

6 Configuration Parameters for Simulink® Models

Command-Line Information: Optimization Pane: General Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

UseFloatMulNetSlope
(Simulink Fixed Point)
off, on

Optimization
> Use floating-point
multiplication to
handle net slope
corrections

Use floating-point multiplication
to perform net slope correction for
floating-point to fixed-point casts.

UseIntDivNetSlope (Simulink
Fixed Point)
off, on

Optimization
> Use integer
division to handle
net slopes that
are reciprocals of
integers

Perform net slope correction using
integer division when simplicity
and accuracy conditions are met.

Command-Line Information: Optimization Pane: Signals and Parameters Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

BufferReuse
off, on

Optimization
> Signals and
Parameters
> Reuse block
outputs

Reuse local (function) variables for
block outputs wherever possible.
Selecting this option trades code
traceability for code efficiency.

EnableMemcpy
off, on

Optimization
> Signals and
Parameters
> Use memcpy for
vector assignment

Optimize code generated for vector
assignment by replacing for loops
with memcpy function calls.

6-350

Parameter Reference

Command-Line Information: Optimization Pane: Signals and Parameters Tab
(Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

EnhancedBackFolding
off, on

Optimization
> Signals and
Parameters
> Minimize data
copies between local
and global variables

Reuse existing global variables to
store temporary results.

ExpressionFolding
off, on

Optimization
> Signals and
Parameters
> Eliminate
superfluous
local variables
(Expression folding)
> Interface

Collapse block computations
into single expressions wherever
possible. This improves code
readability and efficiency.

InlineInvariantSignals
off, on

Optimization
> Signals and
Parameters
> Inline invariant
signals

Precompute and inline the values of
invariant signals in the generated
code.

LocalBlockOutputs
off, on

Optimization
> Signals and
Parameters
> Enable local block
outputs

Declare block outputs in local
(function) scope wherever possible
to reduce global RAM usage.

MemcpyThreshold
int - 64

Optimization
> Signals and
Parameters
> Memcpy threshold
(bytes)

Specify the minimum array size in
bytes for which memcpy function
calls should replace for loops
in the generated code for vector
assignments.

6-351

6 Configuration Parameters for Simulink® Models

Command-Line Information: Optimization Pane: Signals and Parameters Tab
(Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

RollThreshold
int - 5

Optimization
> Signals and
Parameters
> Loop unrolling
threshold

Specify the minimum signal width
for which a for loop is to be
generated.

MaxStackSize
<Specify a value>, Inherit
from target

Optimization
> Signals and
Parameters
> Maximum stack
size (bytes)

Specify the maximum stack size in
bytes for your model.

Command-Line Information: Optimization Pane: Stateflow Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

DataBitsets (Stateflow)
off, on

Optimization
> Stateflow
> Use bitsets for
storing Boolean data

Use bit sets for storing Boolean
data.

StateBitsets (Stateflow)
off, on

Optimization
> Stateflow
> Use bitsets
for storing state
configuration

Use bit sets for storing state
configuration.

6-352

Parameter Reference

Command-Line Information: Code Generation Pane: General Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

CheckMdlBeforeBuild
string - off, warning, error

Code Generation
> Check model
before generating
code

Specify whether to run Code
Generation Advisor checks before
generating code.

GenCodeOnly
string - off, on

Code Generation
> Generate code only

Generate source code, but do not
execute the makefile to build an
executable.

GenerateMakefile
string - off, on

Code Generation
> Generate makefile

Specify whether to generate a
makefile during the build process
for a model.

MakeCommand
string - make_rtw

Code Generation
> Make command

Specify the make command and
optional arguments to be used
to generate an executable for the
model.

ObjectivePriorities (GRT)
string - {''}, {'Debugging'},
{'Execution efficiency'}

Code Generation
> Select objective

Specify the code generation
objectives to use with the Code
Generation Advisor.

ObjectivePriorities (ERT)
string - {''}, {'Efficiency'},
{'Traceability'}, {'Safety
precaution'}, {'Debugging'}

Code Generation
> Set objectives

Specify and prioritize the code
generation objectives to use with
the Code Generation Advisor.

6-353

6 Configuration Parameters for Simulink® Models

Command-Line Information: Code Generation Pane: General Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

RTWCompilerOptimization
string - Off, On, Custom

Code Generation
> Compiler
optimization level

Use this parameter to trade off
compilation time against run time
for your model code without having
to supply compiler-specific flags to
other levels of the Simulink Coder
build process.

Off - Turn compiler optimizations
off for faster builds
On - Turn compiler optimizations on
for faster code execution
Custom - Specify custom compiler
optimization flags via the
RTWCustomCompilerOptimizations
parameter

RTWCustomCompiler
Optimizations
string - '', unquoted string of
compiler optimization flags

Code Generation
> Custom compiler
optimization flags

If you specified Custom to the
RTWCompilerOptimization
parameter, use this parameter
to specify custom compiler
optimization flags, for example,
-O2.

SaveLog
off, on

Code Generation
> Save build log

Save build log.

SystemTargetFile
string - grt.tlc

Code Generation
> System target file

Specify a system target file.

6-354

Parameter Reference

Command-Line Information: Code Generation Pane: General Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

TargetLang
string - C, C++, C++
(Encapsulated) (ERT)

Code Generation
> Language

Specify whether to generate C
code, C++ compatible code, or
C++ encapsulated code. The C++
(Encapsulated) value appears
only when you select an ERT system
target file for the model. Using
C++ (Encapsulated) to generate
code requires an Embedded Coder
license.

TemplateMakefile
string - grt_default_tmf

Code Generation
> Template makefile

Specify the current template
makefile for building a Simulink
Coder target.

TLCOptions
string - ''

Code Generation
> TLC options

Specify additional TLC command
line options.

Command-Line Information: Code Generation Pane: Report Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

GenerateReport
string - off, on

Code Generation
> Report
> Create code generation
report

Document the generated C or
C++ code in an HTML report.

LaunchReport
string - off, on

Code Generation
> Report
> Launch report
automatically

Display the HTML report after
code generation completes.

6-355

6 Configuration Parameters for Simulink® Models

Command-Line Information: Code Generation Pane: Comments Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

ForceParamTrailComments
string - off, on

Code Generation
> Comments
> Verbose comments
for SimulinkGlobal
storage class

Specify that comments be included
in the generated file. To reduce
file size, the model parameters
data structure is not commented
when there are more than 1000
parameters.

GenerateComments
string - off, on

Code Generation
> Comments
> Include comments

Include comments in generated
code.

OperatorAnnotations
string - off, on

Code Generation
> Comments
> Operator
annotations

Specify whether to include operator
annotations in the generated code
as comments.

ShowEliminatedStatement
string - off, on

Code Generation
> Comments
> Show eliminated
blocks

Show statements for eliminated
blocks as comments in the
generated code.

SimulinkBlockComments
string - off, on

Code Generation
> Comments
> Simulink block
/ Stateflow object
comments

Insert Simulink block and Stateflow
object names as comments above
the generated code for each block.

6-356

Parameter Reference

Command-Line Information: Code Generation Pane: Symbols Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

MaxIdLength
int - 31

Code Generation
> Symbols
> Maximum
identifier length

Specify the maximum number of
characters that can be used in
generated function, type definition,
and variable names.

ReservedNameArray
string array - {}

Code Generation
> Symbols
> Reserved names

Enter the names of variables or
functions in the generated code that
match the names of variables or
functions specified in custom code
to avoid name conflicts.

UseSimReservedNames
string - off, on

Code Generation
> Symbols
> Use the same
reserved names as
Simulation Target

Specify whether to use the
same reserved names as those
specified in the Simulation
Target > Symbols pane.

Command-Line Information: Code Generation Pane: Custom Code Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

CustomHeaderCode
string - ''

Code Generation
> Custom Code
> Header file

Specify code to appear near the top
of the generated model header file.

CustomInclude
string - ''

Code Generation
> Custom Code
> Include directories

Specify a space-separated list of
include folders to add to the include
path when compiling the generated
code.

6-357

6 Configuration Parameters for Simulink® Models

Command-Line Information: Code Generation Pane: Custom Code Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

Note If your list includes Windows
path strings that contain spaces,
each instance must be enclosed in
double quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

CustomInitializer
string - ''

Code Generation
> Custom Code

Specify code to appear in the
generated model initialize function.

CustomLibrary
string - ''

Code Generation
> Custom Code
> Initialize function
Libraries

Specify a space-separated list of
static library files to link with the
generated code.

CustomSource
string - ''

Code Generation
> Custom Code
> Source files

Specify a space-separated list of
source files to compile and link with
the generated code.

CustomSourceCode
string - ''

Code Generation
> Custom Code
> Source file

Specify code to appear near the top
of the generated model source file.

6-358

Parameter Reference

Command-Line Information: Code Generation Pane: Custom Code Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

CustomTerminator
string - ''

Code Generation
> Custom Code
> Terminate
function

Specify code to appear in the
generated model terminate
function.

RTWUseSimCustomCode
string - off, on

Code Generation
> Custom Code
> Use the same
custom code settings
as Simulation Target

Specify whether to use the same
custom code settings as those in
the Simulation Target > Custom
Code pane.

Command-Line Information: Code Generation Pane: Debug Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

ProfileTLC
string - off, on

Code Generation
> Debug
> Profile TLC

Profile the execution time of each
TLC file used to generate code for
this model in HTML format.

RTWVerbose
string - off, on

Code Generation
> Debug
> Verbose build

Display messages indicating code
generation stages and compiler
output.

RetainRTWFile
string - off, on

Code Generation
> Debug
> Retain .rtw file

Retain the model.rtw file in the
current build folder.

TLCAssert
string - off, on

Code Generation
> Debug
> Enable TLC
assertion

Produce a TLC stack trace when the
argument to the assert directives
evaluates to false.

6-359

6 Configuration Parameters for Simulink® Models

Command-Line Information: Code Generation Pane: Debug Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

TLCCoverage
string - off, on

Code Generation
> Debug
> Start TLC coverage
when generating
code

Generate .log files containing
the number of times each line of
TLC code is executed during code
generation.

TLCDebug
string - off, on

Code Generation
> Debug
> Start TLC
debugger when
generating code

Start the TLC debugger during
code generation at the beginning of
the TLC program. TLC breakpoint
statements automatically invoke
the TLC debugger regardless of this
setting.

Command-Line Information: Code Generation Pane: Interface Tab

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

CodeReplacementLibrary
string - ANSI_C, C99 (ISO),
GNU99 (GNU), C++ (ISO)

(For ERT-based models,
additional target-specific
values may be available;
see the Code replacement
library drop-down list in the
Configuration Parameters
dialog box.)

Code Generation
> Interface
> Code replacement
library

Specify a target-specific math
library for your model. Verify
that your compiler supports the
library you want to use; otherwise
compile-time errors can occur.

ANSI_C - ISO/IEC 9899:1990
C standard math library for
floating-point functions
C99 (ISO) - ISO/IEC 9899:1999 C
standard math library
GNU99 (GNU) - GNU gcc math
library, which provides C99
extensions as defined by compiler
option -std=gnu99

6-360

Parameter Reference

Command-Line Information: Code Generation Pane: Interface Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

C++ (ISO) - ISO/IEC 14882:2003
C++ standard math library

ExtMode
off, on

Code Generation
> Interface
> Interface

Specify the data interface to be
generated with the code.

ExtModeMexArgs
string ('')

Code Generation
> Interface
> Interface
> External mode
> MEX-file
arguments

Specify arguments that are passed
to an external mode interface
MEX-file for communicating with
executing targets.

ExtModeStaticAlloc
off, on

Code Generation
> Interface
> Static memory
allocation

Use a static memory buffer for
external mode instead of allocating
dynamic memory (calls to malloc).

ExtModeStaticAllocSize
integer (1000000)

Code Generation
> Interface
> Static memory
buffer size

Specify the size in bytes of the
external mode static memory
buffer.

ExtModeTransport
int - 0 for TCP/IP, 1 for serial

Code Generation
> Interface
> Interface
> External mode
> Transport layer

Specify transport protocols for
external mode communications.

GenerateASAP2
off, on

Code Generation
> Interface
> Interface

Specify the data interface to be
generated with the code.

GRTInterface
string - off (except on for GRT
models created before R2012a),
on

Code
Generation > Interface > Classic
call interface

Include a code interface (wrapper)
that is compatible with the
pre-R2012a GRT target.

6-361

6 Configuration Parameters for Simulink® Models

Command-Line Information: Code Generation Pane: Interface Tab (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

LogVarNameModifier
string - none, rt_, _rt

Code Generation
> Interface
> MAT-file variable
name modifier

Augment the MAT-file variable
name.

MatFileLogging
string - off, on
(Default is on for GRT targets,
off for ERT targets)

Code Generation
> Interface
> MAT-file logging

Generate code that logs data to a
MAT-file.

RTWCAPIParams
string - off, on

Code Generation
> Interface
> Generate C API
for: parameters

Generate C API parameter tuning
structures.

RTWCAPISignals
string - off, on

Code Generation
> Interface
> Generate C API
for: signals

Generate C API signal structure.

RTWCAPIStates
string - off, on

Code Generation
> Interface
> Generate C API
for: states

Generate C API state structure.

SupportNonFinite
string - off, on

Code Generation
> Interface
> Support non-finite
numbers

Support nonfinite values (inf, nan,
-inf) in the generated code.

UtilityFuncGeneration
string - Auto, Shared location

Code Generation
> Interface
> Shared code
placement

Specify where utility code is to be
generated.

6-362

Parameter Reference

Command-Line Information: Not in GUI

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

CodeGenDirectory Not available For MathWorks use only.

Comment Not available For MathWorks use only.

CompOptLevelCompliant
off, on

Not available Set in SelectCallback for a
target to indicate whether the
target supports the ability to use
the Compiler optimization
level parameter on the Code
Generation pane to control the
compiler optimization level for
building generated code.

Default is off for custom targets
and on for targets provided with
the Simulink Coder and Embedded
Coder products.

ConfigAtBuild Not available For MathWorks use only.

ConfigurationMode Not available For MathWorks use only.

ConfigurationScript Not available For MathWorks use only.

ERTCustomFileBanners Not available For MathWorks use only.

EvaledLifeSpan Not available For MathWorks use only.

ExtModeMexFile Not available For MathWorks use only.

ExtModeTesting Not available For MathWorks use only.

FoldNonRolledExpr Not available For MathWorks use only.

GenerateFullHeader Not available For MathWorks use only.

IncAutoGenComments Not available For MathWorks use only.

IncludeRegionsInRTWFile
BlockHierarchyMap

Not available For MathWorks use only.

IncludeRootSignalInRTWFile Not available For MathWorks use only.

6-363

6 Configuration Parameters for Simulink® Models

Command-Line Information: Not in GUI (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

IncludeVirtualBlocksInRTW
FileBlockHierarchyMap

Not available For MathWorks use only.

IsERTTarget Not available For MathWorks use only.

IsPILTarget Not available For MathWorks use only.

ModelReferenceCompliant
string - off, on

Not available Set in SelectCallback for a target
to indicate whether the target
supports model reference.

ParamNamingFcn Not available For MathWorks use only.

PostCodeGenCommand
string - ''

Not available Add the specified post code
generation command to the model
build process.

PreserveName Not available For MathWorks use only.

PreserveNameWithParent Not available For MathWorks use only.

ProcessScript Not available For MathWorks use only.

ProcessScriptMode Not available For MathWorks use only.

SignalNamingFcn Not available For MathWorks use only.

SystemCodeInlineAuto Not available For MathWorks use only.

TargetFcnLib Not available For MathWorks use only.

TargetLibSuffix
string - ''

Not available Control the suffix used for naming
a target’s dependent libraries
(for example, _target.lib or
_target.a). If specified, the
string must include a period (.).
(For generated model reference
libraries, the library suffix defaults
to _rtwlib.lib on Windows
systems and _rtwlib.a on UNIX
systems.)

6-364

Parameter Reference

Command-Line Information: Not in GUI (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

TargetPreCompLibLocation
string - ''

Not available Control the location of precompiled
libraries. If you do not set this
parameter, the code generator
uses the location specified in
rtwmakecfg.m.

TargetPreprocMaxBitsSint
int - 32

Not available Specify the maximum number of
bits that the target C preprocessor
can use for signed integer math.

TargetPreprocMaxBitsUint
int - 32

Not available Specify the maximum number of
bits that the target C preprocessor
can use for unsigned integer math.

TargetTypeEmulationWarn
SuppressLevel
SuppressLevel
int - 0

Not available When greater than or equal to 2,
suppress warning messages that
the Simulink Coder software
displays when emulating
integer sizes in rapid prototyping
environments.

6-365

6 Configuration Parameters for Simulink® Models

6-366

7

Model Advisor Checks

7 Model Advisor Checks

Embedded Coder Checks

In this section...

“Checks Overview” on page 7-3

“Check solver for code generation” on page 7-4

“Identify questionable blocks within the specified system” on page 7-6

“Identify lookup table blocks that generate expensive out-of-range checking
code” on page 7-7

“Check output types of logic blocks” on page 7-9

“Identify blocks using one-based indexing” on page 7-11

“Check the hardware implementation” on page 7-12

“Identify questionable software environment specifications” on page 7-13

“Identify questionable code instrumentation (data I/O)” on page 7-15

“Check for blocks that have constraints on tunable parameters” on page 7-16

“Check for blocks not recommended for MISRA-C:2004 compliance” on page
7-18

“Check configuration parameters for MISRA-C:2004 compliance” on page
7-19

“Check for model reference configuration mismatch” on page 7-21

“Identify blocks that generate expensive saturation and rounding code”
on page 7-22

“Check sample times and tasking mode” on page 7-23

“Identify questionable subsystem settings” on page 7-24

“Identify questionable fixed-point operations” on page 7-25

“Check model configuration settings against code generation objectives”
on page 7-34

“Check for efficiency optimization parameters” on page 7-35

7-2

Embedded Coder™ Checks

Checks Overview
Use Simulink Coder Model Advisor checks to configure your model for code
generation.

See Also

• Consulting Model Advisor

• Simulink Model Advisor Check Reference

• Simulink Verification and Validation Model Advisor Check Reference

7-3

7 Model Advisor Checks

Check solver for code generation
Check model solver and sample time configuration settings.

Description
Incorrect configuration settings can stop the Simulink Coder software from
generating code. Underspecifying sample times can lead to undesired results.
Avoid generating code that might corrupt data or produce unpredictable
behavior.

Results and Recommended Actions

Condition Recommended Action

The solver type is set incorrectly for
model level code generation.

In the Configuration Parameters
dialog box, on the Solver pane, set

• Type to Fixed-step

• Solver to Discrete (no
continuous states)

Multitasking diagnostic options are
not set to error.

In the Configuration Parameters
dialog box, on the Diagnostics
pane, set

• Sample Time > Multitask
conditionally executed
subsystem to error

• Sample Time > Multitask rate
transition to error

• Data Validity >Multitask data
store to error

Tips
You do not have to modify the solver settings to generate code from a
subsystem. The Embedded Coder build process automatically changes Solver
type to fixed-step when you select Code Generation > Build Subsystem

7-4

Embedded Coder™ Checks

or Code Generation > Generate S-Function from the subsystem context
menu.

See Also

• “Configure Scheduling”

• “Execute Multitasking Models”

7-5

7 Model Advisor Checks

Identify questionable blocks within the specified
system
Identify blocks not supported by code generation or not recommended for
deployment.

Description
The code generator creates code only for the blocks that it supports. Some
blocks are not recommended for production code deployment.

Results and Recommended Actions

Condition Recommended Action

A block is not supported by the
Simulink Coder software.

Remove the specified block from the
model or replace the block with the
recommended block.

A block is not recommended for
production code deployment.

Remove the specified block from the
model or replace the block with the
recommended block.

Check for Gain blocks whose value
equals 1.

Replace Gain blocks with Signal
Conversion blocks.

Capabilities and Limitations
You can run this check on your library models.

See Also
“Supported Products and Block Usage”

7-6

Embedded Coder™ Checks

Identify lookup table blocks that generate expensive
out-of-range checking code
Identify lookup table blocks that generate code to protect against out-of-range
inputs for breakpoint or index values.

Description
This check verifies that the following blocks do not generate code to protect
against inputs that fall outside the range of valid breakpoint values:

• 1-D Lookup Table

• 2-D Lookup Table

• n-D Lookup Table

• Prelookup

This check also verifies that Interpolation Using Prelookup blocks do not
generate code to protect against inputs that fall outside the range of valid
index values.

Following the recommended actions increases both execution and ROM
efficiency of the generated code.

Results and Recommended Actions

Condition Recommended Action

The lookup table block generates
out-of-range checking code.

Change the setting on the block
dialog box so that out-of-range
checking code is not generated.

• For the 1-D Lookup Table,
2-D Lookup Table, n-D
Lookup Table, and Prelookup
blocks, select the check box
for Remove protection
against out-of-range input
in generated code.

7-7

7 Model Advisor Checks

Condition Recommended Action

• For the Interpolation Using
Prelookup block, select the check
box for Remove protection
against out-of-range index in
generated code.

Capabilities and Limitations
You can run this check on your library models.

Action Results
Clicking Modify prevents lookup table blocks from generating out-of-range
checking code, which makes the generated code more efficient.

See Also

• n-D Lookup Table block in the Simulink documentation

• Prelookup block in the Simulink documentation

• Interpolation Using Prelookup block in the Simulink documentation

• “Optimize Generated Code for Lookup Table Blocks” in the Simulink
documentation

7-8

Embedded Coder™ Checks

Check output types of logic blocks
Identify logic blocks that do not use boolean for the output data type.

Description
This check verifies that the output data type of the following blocks is boolean:

• Compare To Constant

• Compare To Zero

• Detect Change

• Detect Decrease

• Detect Fall Negative

• Detect Fall Nonpositive

• Detect Increase

• Detect Rise Nonnegative

• Detect Rise Positive

• Interval Test

• Interval Test Dynamic

• Logical Operator

• Relational Operator

Using output data type boolean increases execution efficiency of the
generated code.

Results and Recommended Actions

Condition Recommended Action

The output data type of a logic block
is not boolean.

In the block dialog box, set Output
data type to boolean.

7-9

7 Model Advisor Checks

Capabilities and Limitations
You can run this check on your library models.

Action Results
Clicking Modify forces logic blocks to use boolean as the output data type.
If a logic block uses uint8 for the output type, clicking Modify changes the
output type to boolean.

7-10

Embedded Coder™ Checks

Identify blocks using one-based indexing
Identify blocks using one-based indexing.

Description
Zero-based indexing is more efficient in the generated code than one-based
indexing. This check identifies blocks using one-based indexing.

Using zero-based indexing increases execution efficiency of the generated code.

See “cgsl_0101: Zero-based indexing”.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
blocks configured for one-based
indexing.

Configure the blocks for zero-based
indexing. Update the supporting
blocks.

The model or subsystem contains
blocks requiring one-based indexing.

Evaluate the blocks to determine if
one-based indexing is used. Consider
replacing the blocks with Simulink
basic blocks.

Capabilities and Limitations
You can run this check on your library models.

7-11

7 Model Advisor Checks

Check the hardware implementation
Identify inconsistent or underspecified hardware implementation settings

Description
The Simulink and Simulink Coder software require two sets of target
specifications. The first set describes the final intended production target.
The second set describes the currently selected target. If the configurations
do not match, the code generator creates extra code to emulate the behavior
of the production target. Inconsistencies or underspecification of hardware
attributes can lead to inefficient or incorrect code generation for the target
hardware.

Results and Recommended Actions

Condition Recommended Action

Device type is set to Unspecified
(assume 32-bit Generic).

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, set Device
type to the target hardware.

Hardware implementation
parameters are not set to
recommended values.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, specify the
following parameters:

• Byte ordering

• Signed integer division
rounding

Hardware implementation
Embedded hardware settings do
not match Emulation hardware
settings.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, consider
selecting the None check box, or
modify the settings to match.

See Also
Making GRT-Based Targets ERT-Compatible

7-12

Embedded Coder™ Checks

Identify questionable software environment
specifications
Identify questionable software environment settings.

Description

• Support for some software environment settings can lead to inefficient code
generation and nonoptimal results.

• Industry standards for C, such as ISO and MISRA®, require identifiers to
be unique within the first 31 characters.

• Stateflow charts with weak Simulink I/O data types lead to inefficient code.

Results and Recommended Actions

Condition Recommended Action

The maximum identifier length does
not conform with industry standards
for C.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set theMaximum
identifier length parameter to 31
characters.

In the Configuration Parameters
dialog box, the parameters on the
Code Generation > Interface
pane are not set to recommended
values.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the following
parameters:

• Support: continuous time

• Support: non-finite numbers

• Support: non-inlined
S-functions

In the Configuration Parameters
dialog box, the parameters on the
Code Generation > Symbols pane
are not set to recommended values.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set the Generate
scalar inlined parameters as
parameter to Literals.

7-13

7 Model Advisor Checks

Condition Recommended Action

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, Support:
variable-size signals is selected.
This might lead to inefficient code.

If you do not intend to
support variable-sized
signals, clear the Code
Generation > Interface > “Support:
variable-size signals” on page
6-182 check box in the Configuration
Parameters dialog box.

The model contains Stateflow charts
with weak Simulink I/O data type
specifications.

Select the Stateflow chart property
Use Strong Data Typing with
Simulink I/O. You might need to
adjust the data types in your model
after selecting the property.

Limitations
A Stateflow license is required when using Stateflow charts.

See Also
“Strong Data Typing with Simulink I/O”

7-14

Embedded Coder™ Checks

Identify questionable code instrumentation (data I/O)
Identify questionable code instrumentation.

Description

• Instrumentation of the generated code can cause nonoptimal results.

• Test points require global memory and are not optimal for production code
generation.

Results and Recommended Actions

Condition Recommended Action

Interface parameters are not set to
recommended values.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set the
parameters to the recommended
values.

Blocks generate assertion code. In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set the Model
Verification block enabling
parameter to Disable All on a
block-by-block basis or globally.

Block output signals have one
or more test points and, if you
have an Embedded Coder license,
the Ignore test point signals
check box is cleared in the
Code Generation pane of the
Configuration Parameters dialog
box.

Remove test points from the specified
block output signals. For each signal,
in the Signal Properties dialog box,
clear the Test point check box.

Alternatively, if themodel is using an
ERT-based system target file, select
the Ignore test point signals check
box on the Code Generation pane
in the Configuration Parameters
dialog box to ignore test points
during code generation.

7-15

7 Model Advisor Checks

Check for blocks that have constraints on tunable
parameters
Identify blocks with constraints on tunable parameters.

Description
Lookup Table and Lookup Table (2-D) blocks have strict constraints when
they are tunable. If you violate lookup table block restrictions, the generated
code produces wrong answers.

Results and Recommended Actions

Condition Recommended Action

Lookup Table blocks have tunable
parameters.

When tuning parameters during
simulation or when running the
generated code, you must:
• Preserve monotonicity of the
setting for the Vector of input
values parameter.

• Preserve the number and location
of zero values that you specify
for Vector of input values
and Vector of output values
parameters if you specify multiple
zero values for the Vector of
input values parameter.

Lookup Table (2-D) blocks have
tunable parameters.

When tuning parameters during
simulation or when running the
generated code, you must:
• Preserve monotonicity of the
setting for the Row index input
values and Column index of
input values parameters.

• Preserve the number and location
of zero values that you specify
for Row index input values,
Column index of input values,

7-16

Embedded Coder™ Checks

Condition Recommended Action

and Vector of output values
parameters if you specify multiple
zero values for the Row index
input values or Column index
of input values parameters.

See Also

• 1-D Lookup Table

• 2-D Lookup Table

7-17

7 Model Advisor Checks

Check for blocks not recommended for MISRA-C:2004
compliance
Identify blocks that are not supported or recommended for MISRA-C:2004
compliant code generation.

Description
Following the recommendations of this check increases the likelihood of
generating MISRA-C:2004 compliant code for embedded applications.

See “hisl_0020: Blocks not recommended for MISRA-C:2004 compliance”.

Results and Recommended Actions

Condition Recommended Action

Blocks that are not supported or
recommended for MISRA-C:2004
compliant code generation were
found in the model or subsystem.
For a list of blocks, see “hisl_0020:
Blocks not recommended for
MISRA-C:2004 compliance”.

Consider replacing the specified
blocks.

Capabilities and Limitations
You can run this check on your library models.

See Also

• “ MISRA C® Guidelines” in the Embedded Coder documentation.

• “MISRA-C:2004 Compliance Considerations”

7-18

Embedded Coder™ Checks

Check configuration parameters for MISRA-C:2004
compliance
Identify configuration parameters that might impact MISRA-C:2004
compliant code generation.

Description
Following the recommendations of this check increases the likelihood of
generating MISRA-C:2004 compliant code for embedded applications.

See “hisl_0060: Configuration parameters that improve MISRA-C:2004
compliance”.

Results and Recommended Actions

Condition Recommended Action

Model Verification block
enabling is set to Use local
settings or Enable All.

In the Configuration
Parameters dialog box, on the
Diagnostics > Data Validity pane,
set Model Verification block
enabling to Disable All.

System target file is set to a
GRT-based target.

In the Configuration Parameters
dialog box, on the Code
Generation > General pane,
set System target file to an
ERT-based target.

Code Generation > Interface
parameters are not set to the
recommended values.

In the Configuration Parameters
dialog box, on the Code
Generation > Interface pane:

• Clear Support: non-finite
numbers

• Clear Support: continuous
time (ERT-based target only)

• Clear Support: non-inlined
S-functions (ERT-based target
only)

7-19

7 Model Advisor Checks

Condition Recommended Action

• Clear MAT-file logging

• Set Code replacement library
to C89/C90 (ANSI)

Parenthesis level is not set to
Maximum (Specify precedence
with parentheses).

In the Configuration Parameters
dialog box, on the Code
Generation > Code Style
pane, set Parenthesis level to
Maximum (Specify precedence
with parentheses).

Maximum identifier length is not
set to 31.

In the Configuration Parameters
dialog box, on the Code
Generation > Symbols pane,
set Maximum identifier length
to 31.

Action Results
Clicking Modify All changes the parameter values to the recommended
values.

Limitations
This check does not review referenced models.

See Also

• “ MISRA C Guidelines” in the Embedded Coder documentation.

• “MISRA-C:2004 Compliance Considerations”

7-20

Embedded Coder™ Checks

Check for model reference configuration mismatch
Identify referenced model configuration parameter settings that do not match
the top model configuration parameter settings.

Description
The code generator cannot create code for top models that contain referenced
models with different, incompatible configuration parameter settings.

Results and Recommended Actions

Condition Recommended Action

The top model and the referenced
model have inconsistent model
configuration parameter settings.

Modify the specified model
configuration settings.

See Also
Model Referencing Configuration Parameter Requirements

7-21

7 Model Advisor Checks

Identify blocks that generate expensive saturation
and rounding code
Check for blocks that generate expensive saturation or rounding code.

Description

• Setting the Saturate on integer overflow parameter can produce
condition-checking code that your application might not require.

• Generated rounding code is inefficient because of Integer rounding mode
parameter setting.

Results and Recommended Actions

Condition Recommended Action

Blocks generate expensive
saturation code.

Check whether your application
requires setting Function Block
Parameters > Signal Attributes
> Saturate on integer overflow.
Otherwise, clear the Saturate on
integer overflow parameter for the
most efficient implementation of the
block in the generated code.

Generated code is inefficient. Set the Function Block
Parameters > Integer
rounding mode parameter to
the recommended value.

7-22

Embedded Coder™ Checks

Check sample times and tasking mode
Set up the sample time and tasking mode for your system.

Description
Incorrect tasking mode can result in inefficient code execution or incorrect
generated code.

Results and Recommended Actions

Condition Recommended Action

The model represents a multirate
system but is not configured for
multitasking.

In the Configuration Parameters
dialog box, on the Solver pane, set
the Tasking mode for periodic
sample times parameter as
recommended.

The model is configured for
multitasking, but multitasking is
not desirable on the target hardware.

In the Configuration Parameters
dialog box, on the Solver pane,
set the Tasking mode for
periodic sample times parameter
to SingleTasking, or change
the settings on the Hardware
Implementation pane.

See Also
“Single-Tasking and Multitasking Execution Modes”

7-23

7 Model Advisor Checks

Identify questionable subsystem settings
Identify questionable subsystem block settings.

Description
Subsystem blocks implemented as void/void functions in the generated code
use global memory to store the subsystem I/O.

Results and Recommended Actions

Condition Recommended Action

Subsystem blocks have the
Subsystem Parameters >
Function packaging option set to
Function.

Set the Subsystem Parameters >
Function packaging parameter to
Auto.

See Also
Subsystem block

7-24

Embedded Coder™ Checks

Identify questionable fixed-point operations
Identify fixed-point operations that can lead to nonoptimal results.

Description
The following operations can lead to nonoptimal results:

• Division

- The rounding behavior of signed integer division is not fully specified by
C language standards. Therefore, the generated code for division is large
to provide bit-true agreement between simulation and code generation.

- Integer division generated code contains protection against arithmetic
exceptions such as division by zero, INT_MIN/-1, and LONG_MIN/-1. If
you construct models making it impossible for exception triggering input
combinations to reach a division operation, the protection code generated
as part of the division operation is redundant.

- The index search method Evenly-spaced points requires a division
operation, which can be computationally expensive.

• Multiplication

- Product blocks are configured to do more than one division operation.
Multiplying all the denominator terms together first, and then
computing only one division operation improves accuracy and speed in
floating-point and fixed-point calculations.

- Product blocks are configured to do more than one multiplication or
division operation. Using several blocks, with each block performing
one multiplication or one division operation, allows you to control the
data type and scaling used for intermediate calculations. The choice of
data types for intermediate calculations affects precision, range errors,
and efficiency.

- Blocks that have the Saturate on integer overflow parameter
selected, and have an ideal multiplication product with a larger integer
size than the target integer size, must determine the ideal product in
generated C code. The C code required to do this multiplication is large
and slow.

7-25

7 Model Advisor Checks

- Blocks with relative scaling of inputs and outputs must determine the
ideal product in the generated C code. The C code required to do this
multiplication is large and slow.

- Blocks that multiply signals with nonzero bias require extra steps to
implement the multiplication. Inserting Data Type Conversion blocks
remove the biases, and allow you to control data type and scaling for
intermediate calculations. The conversion is done once and other blocks
in the subsystem benefit from simpler, bias-free math.

- Blocks are multiplying signals with mismatched slope adjustment
factors. This mismatch causes the overall operation to involve two
multiply instructions.

- Blocks are multiplying signals with mismatched slope adjustment
factors. This mismatch causes the overall operation to involve integer
multiplication followed by shifts. Under certain simplicity and accuracy
conditions when the net slope is a reciprocal of an integer, it is sometimes
more efficient to replace the multiplication and shifts with an integer
division.

- The Simulink Coder software generates a reciprocal operation followed
by a multiply operation for Product blocks that have a divide operation
for the first input, and a multiply operation for the second input. If you
reverse the inputs so that the multiplication occurs first and the division
occurs second, the Simulink Coder software generates a single division
operation for both inputs.

- An input with an invariant constant value is used as the denominator
in an online division operation. If the operation is changed to
multiplication, and the invariant input is replaced by its reciprocal, then
the division is done offline and the online operation is multiplication.
This leads to faster and smaller generated code.

• Addition

- Sum blocks can have a range error when the input range exceeds the
output range.

- A Sum block has an input with a slope adjustment factor that does not
equal the slope adjustment factor of the output. This mismatch requires
the Sum block to do one or more multiplication operations.

7-26

Embedded Coder™ Checks

- The net sum of the Sum block input biases does not equal the bias of the
output. The generated code includes one extra addition or subtraction
instruction to account for the net bias adjustment. For better accuracy
and efficiency, nonzero bias terms are collected into a single net bias
correction term. The ranges given for the input and output exclude their
biases.

• Using Relational Operator blocks

- The data types of the Relational Operator block inputs are not the same.
A conversion operation is required every time the block is executed. If
one of the inputs is invariant, then changing the data type and scaling of
the invariant input to match the other input improves the efficiency of
the model.

- The Relational Operator block inputs have different ranges, resulting in
a range error when casting, and a precision loss each time a conversion
is performed. You can insert Data Type Conversion blocks before the
Relational Operator block to convert both inputs to a common data type
that has enough range and precision to represent each input.

- The inputs of the Relational Operator block have different slope
adjustment factors. The mismatch causes the Relational Operator block
to require a multiply operation each time the input with lesser positive
range is converted to the data type and scaling of the input with greater
positive range.

- When you select isNan, isFinite, or isInf as the operation for the
Relational Operator block, the block switches to one-input mode. In this
mode, if the input data type is fixed point, boolean, or a built-in integer,
the output is FALSE for isInf and isNan, TRUE for isFinite. This
might result in dead code which will be eliminated by Simulink Coder.

• Using MinMax blocks

- The input and output of the MinMax block have different data types. A
conversion operation is required every time the block is executed. The
model is more efficient with the same data types.

- The input of the MinMax block is converted to the data type and scaling
of the output before performing a relational operation, resulting in a
range error when casting, or a precision loss each time a conversion is
performed.

7-27

7 Model Advisor Checks

- The input of the MinMax block has a different slope adjustment factor
than the output. This mismatch causes the MinMax block to require a
multiply operation each time the input is converted to the data type
and scaling of the output.

• Discrete-Time Integrator blocks have a complicated initial condition
setting. The initial condition for the Discrete-Time Integrator blocks are
used to initialize the state and output. As a result, the output equation
generates excessive code and an extra global variable is required.

• The Compare to Zero block uses the input data type to represent zero. If
the input data type of the Compare to Zero block cannot represent zero
exactly, the input signal is compared to the closest representable value of
zero, resulting in parameter overflow.

• The Compare to Constant block uses the input data type to represent its
Constant value parameter. If the Constant value is outside the range
that the input data type can represent, the input signal is compared to the
closest representable value of the constant, resulting in parameter overflow.

Results and Recommended Actions

Conditions Recommended Action

Integer division generated code is
large.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, set the
Signed integer division rounds
to parameter to the recommended
value.

Protection code generated as part of
the division operation is redundant.

Verify that your model cannot cause
exceptions in division operations and
then remove redundant protection
code by setting the Optimization
> Remove code that protects
against division arithmetic
exceptions parameter in the
Configuration Parameters dialog
box.

7-28

Embedded Coder™ Checks

Conditions Recommended Action

Generated code is inefficient. Set the Function Block
Parameters > Integer
rounding mode parameter to
the recommended value.

Lookup Table vector of input values
is not evenly spaced.

If breakpoint data is nontunable,
adjust the data to have even,
power of 2 spacing. See
fixpt_look1_func_approx.

Lookup Table vector of input values
is not evenly spaced when quantized,
but it is very close to being evenly
spaced.

If breakpoint data is nontunable,
adjust the data to have even,
power of 2 spacing. See
fixpt_evenspace_cleanup.

Lookup Table vector of input values
is evenly spaced, but the spacing is
not a power of 2.

If breakpoint data is nontunable,
adjust the data to have even,
power of 2 spacing. See
fixpt_look1_func_approx.

For a Prelookup or n-D Lookup Table
block, Index search method is
Evenly spaced points. Breakpoint
data does not have power of 2
spacing.

If breakpoint data is nontunable,
adjust the data to have even, power
of 2 spacing. Otherwise, in the
block parameter dialog box, specify
a different Index search method
to avoid the computation-intensive
division operation.

n-D Lookup Table breakpoint data is
not evenly spaced and Index search
method is not Evenly spaced
points.

If breakpoint data is nontunable,
adjust the data to have even, power
of 2 spacing and then set Index
search method to Evenly spaced
points.

n-D Lookup Table breakpoint data
is evenly spaced and Index search
method is Evenly spaced points.
But the spacing is not a power of 2.

If breakpoint data is nontunable,
adjust the data to have even,
power of 2 spacing. See
fixpt_look1_func_approx.

7-29

7 Model Advisor Checks

Conditions Recommended Action

n-D Lookup Table breakpoint data is
evenly spaced, but the spacing is not
a power of 2. Also, Index search
method is not Evenly spaced
points.

Set Index search method to
Evenly spaced points. Also, if
the data is nontunable, consider an
even, power of 2 spacing.

n-D Lookup Table breakpoint data is
evenly spaced, and the spacing is a
power of 2. But the Index search
method is not Evenly spaced
points.

Set Index search method to
Evenly spaced points.

Blocks require cumbersome
multiplication.

Restrict multiplication operations:
• So the product integer size is not
larger than the target integer size.

• To the recommended size.

Blocks multiply signals with nonzero
bias.

Insert a Data Type Conversion block
before and after the block containing
the multiplication operation.

Product blocks are multiplying
signals with mismatched slope
adjustment factors.

Change the scaling of the output
so that its slope adjustment factor
is the product of the input slope
adjustment factors.

Product blocks are multiplying
signals with mismatched slope
adjustment factors. The net
slope correction uses multiplication
followed by shifts, which is inefficient
for some target hardware.

Select Use integer division to
handle net slopes that are
reciprocals of integers if the net
slope is the reciprocal of an integer
and division is more efficient than
multiplication and shifts on the
target hardware.

7-30

Embedded Coder™ Checks

Conditions Recommended Action

Note This optimization takes
place only if certain simplicity and
accuracy conditions are met. For
more information, see “Handle Net
Slope Correction” in the Simulink
Fixed Point documentation.

Product blocks are configured to do
multiple division operations.

Multiply all the denominator terms
together, and then do a single
division using cascading Product
blocks.

Product blocks are configured to
do many multiplication or division
operations.

Split the operations across several
blocks, with each block performing
one multiplication or one division
operation.

Product blocks are configured with a
divide operation for the first input
and a multiply operation for the
second input.

Reverse the inputs so the multiply
operation occurs first and the
division operation occurs second.

An input with an invariant constant
value is used as the denominator in
an online division operation.

Change the operation to
multiplication, and replace the
invariant input by its reciprocal.

The data type range of the inputs of
Sum blocks exceeds the data type
range of the output, which can cause
overflow or saturation.

Change the output and accumulator
data types so the range equals or
exceeds all input ranges.

For example, if the model has two
inputs

• int8 (–128 to 127)

• uint8 (0 to 255)

The data type range of the output
and accumulator must equal or

7-31

7 Model Advisor Checks

Conditions Recommended Action

exceed –128 to 255. A int16 (–32768
to 32767) data type meets this
condition.

A Sum block has an input with a
slope adjustment factor that does not
equal the slope adjustment factor of
the output.

Change the data types so the inputs,
outputs, and accumulator have the
same slope adjustment factor.

The net sum of the Sum block input
biases does not equal the bias of the
output.

Change the bias of the output
scaling, making the net bias
adjustment zero.

The inputs of the Relational
Operator block have different data
types.

• Change the data type and scaling
of the invariant input to match
other inputs.

• Insert Data Type Conversion
blocks before the Relational
Operator block to convert both
inputs to a common data type.

The inputs of the Relational
Operator block have different slope
adjustment factors.

Change the scaling of either input.

The output of the Relational
Operator block is constant. This
might result in dead code which will
be eliminated by Simulink Coder.

Review your model design and either
remove the Relational Operator
block or replace it with the constant.

The input and output of the MinMax
block have different data types.

Change the data type of the input or
output.

The input of the MinMax block has
a different slope adjustment factor
than the output.

Change the scaling of the input or
the output.

7-32

Embedded Coder™ Checks

Conditions Recommended Action

The initial condition of the
Discrete-Time Integrator block is
used to initialize both the state and
the output.

Set the Function Block
Parameters > Use initial
condition as initial and reset
value for parameter to State only
(most efficient).

Parameter overflow occurred for the
Compare to Zero block. This block
uses the input data type to represent
zero. The input data type cannot
represent zero exactly, so the input
value was compared to the closest
representable value of zero.

Select an input data type that can
represent zero.

Parameter overflow occurred for the
following Compare to Constant block.
This block uses the input data type
to represent its Constant value
parameter. The Constant value
parameter is outside the range that
the input data type can represent.
The input signal was compared to
the closest representable value of
the Constant value parameter.

Choose an input data type that
can represent the Constant value
parameter or change the Constant
value parameter to match the input
data type.

Limitations
A Simulink Fixed Point license is required to generate fixed-point code.

See Also

• 1-D Lookup Table

• n-D Lookup Table

• Prelookup

• Remove code that protects against division arithmetic exceptions

7-33

7 Model Advisor Checks

Check model configuration settings against code
generation objectives
Check the configuration parameter settings for the model against the code
generation objectives.

Description
Each parameter in the Configuration Parameters dialog box might have
different recommended settings for code generation based on your objectives.
This check helps you identify the recommended setting for each parameter so
that you can achieve optimized code based on your objective.

Results and Recommended Actions

Condition Recommended Action

Parameters are set to values other
than the value recommended for the
specified objectives.

Set the parameters to the
recommended values.

Note A change to one parameter
value can impact other parameters.
Passing the check might take
multiple iterations.

Action Results
Clicking Modify Parameters changes the parameter values to the
recommended values.

See Also

• The Simulink Coder “Recommended Settings Summary” on page 6-318

• The Embedded Coder “Recommended Settings Summary”

• “Application Objectives” in the Simulink Coder User’s Guide.

• “Application Objectives” in the Embedded Coder documentation.

7-34

Embedded Coder™ Checks

Check for efficiency optimization parameters
Identify optimization parameters that depend on the Execution efficiency
or ROM efficiency objectives.

Description
Setting the optimization parameter Use memcpy for vector assignment
to the recommended value increases the execution efficiency and reduces
ROM usage.

Results and Recommended Actions

Condition Recommended Action

The model specifies an execution
or ROM efficiency objective and
the Use memcpy for vector
assignment parameter is cleared.

In the Configuration
Parameters dialog box, on the
Optimization > Signals and
Parameters pane, select Use
memcpy for vector assignment.

Action Results
ClickingModify changes the parameter value to the recommended value.

Limitations
This check is in the Code Generation Advisor only.

See Also

• “Optimize Code Generated for Vector Assignments”

• “Use memcpy for vector assignment” in the Simulink documentation

7-35

7 Model Advisor Checks

7-36

Index

IndexA
activate 3-5
add 3-7
addCompileFlags function 3-2
addDefines function 3-10
addIncludeFiles function 3-13
addIncludePaths function 3-17
addLinkFlags function 3-20
addLinkObjects function 3-23
addNonBuildFiles function 3-28
address 3-31
addSourceFiles function 3-34
addSourcePaths function 3-38
addTMFTokens function 3-41
Async Interrupt block 5-2
Asynchronous Task Specification 5-10
Asynchronous Task Specification block 5-8

B
blocks

Async Interrupt 5-2
Generated S-Function 5-24
Model Header

reference 5-39
Model Source

reference 5-40
Protected RT 5-41
System Derivatives 5-42
System Disable 5-43
System Enable 5-45

reference 5-44
System Outputs 5-46
System Start 5-47
System Terminate 5-48
System Update 5-49
Task Sync 5-60
Unprotected RT 5-72

Byte Pack block 5-14
Byte Reversal block 5-18

Byte Unpack block 5-21

C
compiler options

adding to build information 3-2
getting from build information 3-66

configuration parameters
code generation 6-347
Code Generation (general)

Check model before generating code 6-33
impacts of settings 6-318
pane 6-286

buildAction 6-289
buildFormat 6-287
Combine signal/state structures 6-218
Compiler options string: 6-297
DiagnosticActions 6-316
Export IDE link handle to base

workspace: 6-313
Function name: 6-294
Generate preprocessor

conditionals 6-214
Global types: 6-109
gui item name 6-308
IDE link handle name: 6-315
ideObjBuildTimeout 6-310
ideObjTimeout 6-312
Linker options string: 6-299
Operator annotations 6-79
overrunNotificationMethod 6-292
Profile real-time execution 6-304
profileBy 6-306
projectOptions 6-295
System stack size (MAUs): 6-301
variable-size signals 6-182

Configuration Parameters
Code Generation (general)

Check model 6-32
Configuration Parameters dialog box

Index-1

Index

Code Generation (comments)
Comments tab overview 6-71
Custom comments 6-85
Custom comments function 6-87
Include comments 6-72
MATLAB function help text 6-93
MATLAB source code as comments 6-75
Requirements in block comments 6-91
Show eliminated blocks 6-77
Simulink block descriptions 6-81
Simulink block Stateflow object

comments 6-74
Simulink data object descriptions 6-83
Stateflow object descriptions 6-89
Verbose comments for Simulink global

storage class 6-78
Code Generation (custom code)

Custom Code tab overview 6-136
Header file 6-141
Include directories 6-144
Initialize function 6-142
Libraries 6-148
Source file 6-140
Source files 6-146
Terminate function 6-143
Use local custom code settings (do not

inherit from main model) 6-138
Use the same custom code settings as

Simulation Target 6-137
Code Generation (debug)

Debug tab overview 6-152
Enable TLC assertion 6-159
Profile TLC 6-155
Retain .rtw file 6-154
Start TLC coverage when generating

code 6-158
Start TLC debugger when generating

code 6-156
Verbose build 6-153

Code Generation (general)

Build/Generate code 6-37
Compiler optimization level 6-10
Custom compiler optimization flags 6-12
General tab overview 6-5
Generate code only 6-35
Generate makefile 6-15
Ignore custom storage classes 6-21
Ignore test point signals 6-23
Language 6-8
Make command 6-17
Package code and artifacts 6-38
Prioritized objectives code 6-27
Select objective 6-25
Set objectives 6-28
System target file 6-6
Template makefile 6-19
TLC options 6-13
Zip file name 6-40

Code Generation (interface)
Block parameter access 6-204
Block parameter visibility 6-200
Classic call interface 6-187
Code replacement library 6-165
Configure C++ Encapsulation

Interface 6-222
Configure Model Functions 6-221
Custom 6-168
External I/O access 6-208
Generate C API for parameters 6-232
Generate C API for root-level I/O 6-234
Generate C API for signals 6-231
Generate C API for states 6-233
Generate destructor 6-210
Generate reusable code 6-193
interface 6-228
Interface tab overview 6-164
Internal data access 6-206
Internal data visibility 6-202
MAT-file logging 6-223
MAT-file variable name modifier 6-226

Index-2

Index

Maximum word length 6-185
MEX-file arguments 6-237
Multiword type definitions 6-183
Pass root-level I/O as 6-198
Reusable code error diagnostic 6-196
Single output/update function 6-189
Static memory allocation 6-239
Static memory buffer size 6-241
Support absolute time 6-176
Support complex numbers 6-175
Support continuous time 6-178
Support floating-point numbers 6-171
Support non-finite numbers 6-173
Support non-inlined S-functions 6-180
Suppress error status in real-time model

data structure 6-216
Terminate function required 6-191
Transport layer 6-235
Use operator new for referenced model

object registration 6-212
Utility code generation 6-169

Code Generation (report)
Code-to-model 6-50 6-54
Configure 6-56
Create code generation report 6-45
Eliminated / virtual blocks 6-57
Launch report automatically 6-48
Model-to-code 6-52
Report tab overview 6-44
Static code metrics 6-65
Summarize which blocks triggered code

replacements 6-67
Traceable MATLAB functions 6-63
Traceable Simulink blocks 6-59
Traceable Stateflow objects 6-61

Code Generation (RSim target)
Enable RSim executable to load

parameters from a MAT-file 6-246
Force storage classes to AUTO 6-248
RSim Target tab overview 6-245

Solver selection 6-247
Code Generation (S-function target)

Code Generation S-Function Target Tab
Overview 6-251

Create new model 6-252
Include custom source code 6-254
Use value for tunable parameters 6-253

Code Generation (symbols)
Constant macros 6-115
#define naming 6-128
Field name of global types 6-104
Generate scalar inlined parameter

as 6-121
Global types 6-101
Global variables 6-99
Local block output variables 6-113
Local temporary variables 6-111
M-function 6-124
Maximum identifier length 6-119
Minimum mangle length 6-117
Parameter naming 6-126
Reserved names 6-131
Signal naming 6-122
Subsystem methods 6-106
Symbols tab overview 6-98
Use the same reserved names as

Simulation Target 6-130
Code Generation (Tornado target)

Base task priority 6-271
Code format 6-266
Code replacement library 6-258
Download to VxWorks target 6-269
External mode 6-274
MAT-file logging 6-262
MAT-file variable name modifier 6-264
MEX-file arguments 6-278
Static memory allocation 6-280
Static memory buffer size 6-282
StethoScope 6-267
Task stack size 6-273

Index-3

Index

Tornado Target tab overview 6-257
Transport layer 6-276
Utility code generation 6-260

Configuration Set Objectives dialog box 6-29

D
debug operation

new 3-100
debugging

and configuration parameter settings 6-318
derivatives

in custom code 5-42
disable code

in custom code 5-43

E
efficiency

and configuration parameter settings 6-318
enable code

in custom code 5-44
extensions, file. See file extensions

F
file and project operation

new 3-100
file extensions

updating in build information 3-162
file separator

changing in build information 3-165
file types. See file extensions
findIncludeFiles function 3-59

G
Generated S-Function block 5-24
getCompileFlags function 3-66
getDefines function 3-68
getFullFileList function 3-72

getIncludeFiles function 3-74
getIncludePaths function 3-77
getLinkFlags function 3-79
getNonBuildFiles function 3-82
getSourceFiles function 3-85
getSourcePaths function 3-88

H
header files

finding for inclusion in build information
object 3-59

I
include files

adding to build information 3-13
finding for inclusion in build information

object 3-59
getting from build information 3-74

include paths
adding to build information 3-17
getting from build information 3-77

initialization code
in custom code 5-45

interrupt service routines
creating 5-2

L
limitations

of Simulink code generation 1-2
link objects

adding to build information 3-23
link options

adding to build information 3-20
getting from build information 3-79

M
macros

Index-4

Index

adding to build information 3-10
getting from build information 3-68

model entry points
model_initialize 3-93
model_SetEventsForThisBaseStep 3-94
model_step 3-96
model_terminate 3-99

model header
in custom code 5-39

Model Header block
reference 5-39

Model Source block
reference 5-40

model_initialize function 3-93
model_output function 3-98
model_SetEventsForThisBaseStep

function 3-94
model_step function 3-96
model_terminate function 3-99
model_update function 3-98
models

parameters for configuring 6-347

N
nonbuild files

adding to build information 3-28
getting from build information 3-82

O
outputs code

in custom code 5-46

P
packNGo function 3-104
parameter structure

getting 3-118
parameters

for configuring model code generation and
targets 6-347

paths
updating in build information 3-162

program file, reload 3-113
project files

packaging for relocation 3-104
Protected RT block 5-41

R
rate transitions

protected 5-41
unprotected 5-72

reload 3-113
RSim target

parameter loading 6-246
rsimgetrtp function 3-118
RTW.getBuildDir function 3-129

S
S-function target

generating 5-24
safety precautions

and configuration parameter settings 6-318
separator, file

changing in build information 3-165
Simulink.ModelReference.protect

command 3-145
slConfigUIGetVal function 3-151
slConfigUISetEnabled function 3-153
slConfigUISetVal function 3-155
source code

in custom code 5-40
source files

adding to build information 3-34
getting from build information 3-85

source paths
adding to build information 3-38

Index-5

Index

getting from build information 3-88
startup code

in custom code 5-47
System Derivatives block 5-42
System Disable block 5-43
System Enable block 5-44
System Initialize block 5-45
System Outputs block 5-46
System Start block 5-47
System Terminate block 5-48
System Update block 5-49

T
Target Language Compiler and Function

Library 3-159
Target Preferences block 5-50
targets

parameters for configuring 6-347
task function

creating 5-60
Task Sync block 5-60
termination code

in custom code 5-48
tlc function 3-159
TMF tokens

adding to build information 3-41
traceability

and configuration parameter settings 6-318

U
UDP Receive block 5-64
UDP Send block 5-69
Unprotected RT block 5-72
update code

in custom code 5-49
updateFilePathsAndExtensions function 3-162
updateFileSeparator function 3-165

Index-6

	toc
	Check Bug Reports for Issues and Fixes
	Simulink Code Generation Limitations
	Simulink Code Generation Limitations

	Glossary
	Function Reference
	Build Information
	Build Process
	Desktop IDEs and Desktop Targets
	IDE Automation Interface
	Eclipse IDE

	XMakefile

	Model Entry Points
	Project Documentation
	Rapid Simulation
	System Target File Callback Interface
	Target Language Compiler and Function Library

	Alphabetical List
	Create the Protected Model
	Delete Unnecessary Variable Names from neededVars
	Save Base Workspace Definitions
	Package Protected Model

	Block Reference
	Asynchronous
	Interrupt Templates

	Custom Code
	Desktop Targets (desktoptargetslib)
	Host Communication
	Target Preferences
	Linux
	Windows

	S-Function Target

	Blocks — Alphabetical List
	Configuration Parameters for Simulink Models
	Code Generation Pane: General
	Code Generation: General Tab Overview
	See Also

	System target file
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Language
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Compiler optimization level
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Custom compiler optimization flags
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	TLC options
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Generate makefile
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Make command
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Template makefile
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Ignore custom storage classes
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Ignore test point signals
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Select objective
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Prioritized objectives
	Dependencies
	Command-Line Information
	See Also

	Set objectives
	Dependency
	See Also

	Set Objectives — Code Generation Advisor Dialog Box
	Settings
	Dependency
	Command-Line Information
	See Also

	Check model
	Settings
	Dependency
	See Also

	Check model before generating code
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Generate code only
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Build/Generate code
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Package code and artifacts
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Zip file name
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Report
	Code Generation: Report Tab Overview
	Configuration
	See Also

	Create code generation report
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Open report automatically
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code-to-model
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Model-to-code
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Generate model Web view
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Configure
	Dependency
	See Also

	Eliminated / virtual blocks
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Traceable Simulink blocks
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Traceable Stateflow objects
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Traceable MATLAB functions
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Static code metrics
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Summarize which blocks triggered code replacements
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Comments
	Code Generation: Comments Tab Overview
	See Also

	Include comments
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Simulink block / Stateflow object comments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	MATLAB source code as comments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Show eliminated blocks
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Verbose comments for SimulinkGlobal storage class
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Operator annotations
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Simulink block descriptions
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Simulink data object descriptions
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Custom comments (MPT objects only)
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Custom comments function
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Stateflow object descriptions
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Requirements in block comments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	MATLAB function help text
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Symbols
	Code Generation: Symbols Tab Overview
	See Also

	Global variables
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Global types
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Field name of global types
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Subsystem methods
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Subsystem method arguments
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Local temporary variables
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Local block output variables
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Constant macros
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Minimum mangle length
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum identifier length
	Settings
	Tips
	Command-Line Information
	Recommended Settings

	Generate scalar inlined parameter as
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Signal naming
	Settings
	Dependencies
	Limitation
	Command-Line Information
	Recommended Settings
	See Also

	M-function
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Parameter naming
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	#define naming
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Use the same reserved names as Simulation Target
	Settings
	Command-Line Information
	Recommended Settings

	Reserved names
	Settings
	Tips
	Command-Line Information
	Recommended Settings

	Code Generation Pane: Custom Code
	Code Generation: Custom Code Tab Overview
	Configuration
	See Also

	Use the same custom code settings as Simulation Target
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Use local custom code settings (do not inherit from main model)
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Source file
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Header file
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Initialize function
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Terminate function
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Include directories
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Source files
	Settings
	Limitation
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Libraries
	Settings
	Limitation
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Debug
	Code Generation: Debug Tab Overview
	See Also

	Verbose build
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Retain .rtw file
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Profile TLC
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Start TLC debugger when generating code
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Start TLC coverage when generating code
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Enable TLC assertion
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Interface
	Code Generation: Interface Tab Overview
	See Also

	Code replacement library
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Custom
	Dependencies
	See Also

	Shared code placement
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Support: floating-point numbers
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Support: non-finite numbers
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Support: complex numbers
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Support: absolute time
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Support: continuous time
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Support: non-inlined S-functions
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Support: variable-size signals
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Multiword type definitions
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Maximum word length
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings

	Classic call interface
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Single output/update function
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Terminate function required
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Generate reusable code
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Reusable code error diagnostic
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Pass root-level I/O as
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Block parameter visibility
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Internal data visibility
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Block parameter access
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Internal data access
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	External I/O access
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Generate destructor
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Use operator new for referenced model object registration
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Generate preprocessor conditionals
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Suppress error status in real-time model data structure
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Combine signal/state structures
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Configure Model Functions
	Dependencies
	See Also

	Configure C++ Encapsulation Interface
	Dependencies
	See Also

	MAT-file logging
	Settings
	Dependencies
	Limitation
	Command-Line Information
	Recommended Settings
	See Also

	MAT-file variable name modifier
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Interface
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Generate C API for: signals
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Generate C API for: parameters
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Generate C API for: states
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Generate C API for: root-level I/O
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Transport layer
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	MEX-file arguments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Static memory allocation
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Static memory buffer size
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: RSim Target
	Code Generation: RSim Target Tab Overview
	Configuration
	See Also

	Enable RSim executable to load parameters from a MAT-file
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Solver selection
	Settings
	Command-Line Information
	Recommended Settings

	Force storage classes to AUTO
	Settings
	Tips
	Command-Line Information
	Recommended Settings

	Code Generation Pane: S-Function Target
	Code Generation S-Function Target Tab Overview
	Configuration
	See Also

	Create new model
	Settings
	Command-Line Information
	See Also

	Use value for tunable parameters
	Settings
	Command-Line Information
	See Also

	Include custom source code
	Settings
	Command-Line Information
	See Also

	Code Generation Pane: Tornado Target
	Code Generation: Tornado Target Tab Overview
	Configuration
	See Also

	Code replacement library
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Shared code placement
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	MAT-file logging
	Settings
	Dependencies
	Limitation
	Command-Line Information
	Recommended Settings
	See Also

	MAT-file variable name modifier
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code Format
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	StethoScope
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Download to VxWorks target
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Base task priority
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Task stack size
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	External mode
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Transport layer
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	MEX-file arguments
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Static memory allocation
	Settings
	Tip
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Static memory buffer size
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: IDE Link
	Code Generation: IDE Link Tab Overview
	Build format
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build action
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Overrun notification
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Function name
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Configuration
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Compiler options string
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Linker options string
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System stack size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile real-time execution
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile by
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of profiling samples to collect
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to build project (s)
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to complete IDE operation (s)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Export IDE link handle to base workspace
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	IDE link handle name
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Source file replacement
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Parameter Reference
	Recommended Settings Summary
	Parameter Command-Line Information Summary

	Model Advisor Checks
	Embedded Coder Checks
	Checks Overview
	See Also

	Check solver for code generation
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify questionable blocks within the specified system
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Identify lookup table blocks that generate expensive out-of-rang
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Action Results
	See Also

	Check output types of logic blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Action Results

	Identify blocks using one-based indexing
	Description
	Results and Recommended Actions
	Capabilities and Limitations

	Check the hardware implementation
	Description
	Results and Recommended Actions
	See Also

	Identify questionable software environment specifications
	Description
	Results and Recommended Actions
	Limitations
	See Also

	Identify questionable code instrumentation (data I/O)
	Description
	Results and Recommended Actions

	Check for blocks that have constraints on tunable parameters
	Description
	Results and Recommended Actions
	See Also

	Check for blocks not recommended for MISRA-C:2004 compliance
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check configuration parameters for MISRA-C:2004 compliance
	Description
	Results and Recommended Actions
	Action Results
	Limitations
	See Also

	Check for model reference configuration mismatch
	Description
	Results and Recommended Actions
	See Also

	Identify blocks that generate expensive saturation and rounding
	Description
	Results and Recommended Actions

	Check sample times and tasking mode
	Description
	Results and Recommended Actions
	See Also

	Identify questionable subsystem settings
	Description
	Results and Recommended Actions
	See Also

	Identify questionable fixed-point operations
	Description
	Results and Recommended Actions
	Limitations
	See Also

	Check model configuration settings against code generation objec
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check for efficiency optimization parameters
	Description
	Results and Recommended Actions
	Action Results
	Limitations
	See Also

	Index

	tables
	IDE support for type
	Supported File Types and Extensions
	Mapping Application Requirements to the Solver Pane
	Mapping Application Requirements to the Data Import/Export Pane
	Mapping Application Requirements to the Optimization Pane: Gener
	Mapping Application Requirements to the Optimization Pane: Signa
	Mapping Application Requirements to the Optimization Pane: State
	Mapping Application Requirements to the Diagnostics Pane: Solver
	Mapping Application Requirements to the Diagnostics Pane: Sample
	Mapping Application Requirements to the Diagnostics Pane: Data V
	Mapping Application Requirements to the Diagnostics Pane: Type C
	Mapping Application Requirements to the Diagnostics Pane: Connec
	Mapping Application Requirements to the Diagnostics Pane: Compat
	Mapping Application Requirements to the Diagnostics Pane: Model
	Mapping Application Requirements to the Diagnostics Pane: Saving
	Mapping Application Requirements to the Diagnostics Pane: Statef
	Mapping Application Requirements to the Hardware Implementation
	Mapping Application Requirements to the Model Referencing Pane
	Mapping Application Requirements to the Simulation Target Pane:
	Mapping Application Requirements to the Simulation Target Pane:
	Mapping Application Requirements to the Simulation Target Pane:
	Mapping Application Requirements to the Code Generation Pane: Ge
	Mapping Application Requirements to the Code Generation Pane: Re
	Mapping Application Requirements to the Code Generation Pane: Co
	Mapping Application Requirements to the Code Generation Pane: Sy
	Mapping Application Requirements to the Code Generation Pane: Cu
	Mapping Application Requirements to the Code Generation Pane: De
	Mapping Application Requirements to the Code Generation Pane: In
	Command-Line Information: Optimization Pane: General Tab
	Command-Line Information: Optimization Pane: Signals and Paramet
	Command-Line Information: Optimization Pane: Stateflow Tab
	Command-Line Information: Code Generation Pane: General Tab
	Command-Line Information: Code Generation Pane: Report Tab
	Command-Line Information: Code Generation Pane: Comments Tab
	Command-Line Information: Code Generation Pane: Symbols Tab
	Command-Line Information: Code Generation Pane: Custom Code Tab
	Command-Line Information: Code Generation Pane: Debug Tab
	Command-Line Information: Code Generation Pane: Interface Tab
	Command-Line Information: Not in GUI

